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ABSTRACT

In this paper concepts related to SIR model of infectious diseases, the Mathematical model used to explain
factors of the diseases vividly, and their transmission dynamics were dealt in depth. Studying the
transmission dynamics of infectious diseases by making use of mathematical terms-variables was employed
at different time intervals and calculations from a given set of data were carried out forward and backward in
order to check the differences that may occur due to the rate differences in the time interval of the
calculations. Finally, it was found out that discrepancies in the calculations got smaller and smaller when
shorter time intervals were used, which in turn is meant SIR model of infectious diseases can be improved if
relatively less time intervals are used in one’s calculations.

Keywords: Diseases, Mathematical Model, Infectious.

INTRODUCTION

Diseases are as old as time itself. They have been
there since humans were on Earth. Staying healthy
does not mean never getting sick; it is beyond that.
Health is about well being in mind, in body, and in
community (Werner, 1993). If people are able to
help themselves live healthy, they can trust each
other, cooperate and work together so as to get
their needs satisfied, help each other in times of
adversity and plenty, learn, think better, grow and
then live. Thus, we need to understand that it is our
responsibility to think and do everything we can
for the good of people’s health. Mathematical
models allow us to extrapolate from current
information about the state and progress of an
outbreak, to predict the future and, most
importantly, to quantify the uncertainty in these
predictions (Keeling & Danon, 2009).

FINDING OUT THE NEEDS

As someone who is responsible to help people stay
healthy, there is a need for one to gather enough
information so that one will be able to find out the
needs and the concerns of the people. One has to
ask questions not only to get information but also
to make others ask more important questions about

their felt needs, hygiene and sanitation, nutrition,
and about their beliefs to healing and health. For
instance, one can ask questions related to
population such as how many people live in a
given community, how many newborns were there
this year, how many deaths were recorded this
year, what were the causes of the deaths, could
there be possibilities of preventing the deaths,
how? Is the number of people getting larger,
smaller, or remaining the same?

For how long and how often do people get sick last
year, how many people did have chronic illnesses
last year? What were they? Etc. Once these data
are properly collected, it will be possible to
develop a frame work about how to prevent and
treat different diseases; and make administrative
decisions accordingly.

DISEASES ARE OF TWO GROUPS

Infectious diseases - are diseases that spread from
one who is infected to another who is healthy.

Non infectious diseases - are diseases that do not
spread from one who is infected to another who is
healthy but have other causes. To identify which
diseases are infectious and which ones are not is
therefore one of the important pieces of
information that one needs to know for prevention
and treatment matters. For instance, if we have
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come to know that a disease is non infectious, then
we do not need to give attention towards its
treatment but towards its prevention as antibiotics
are of no help for non infectious diseases. Now, we
are leading ourselves into the discussion of
infectious diseases.

MATHEMATICAL MODEL OF
INFECTIOUS DISEASES

The primary goal of the study of systems is to
understand their behaviors and to work for
improvements accordingly. In this case, the
transmission dynamics of the infectious diseases is
the system and understanding its behavior in more
simplified and controlled manners will be possible
if identifying the contributing factors, determining
their values, and predicting their future will be
vivid. This is possible if the contributing factors
will be represented by making use of Mathematical
terms, variables (Jones, et al., 2010).

Importance: Modeling is important to draw the
essential features of the system, describe them
properly, predict the future spread of the disease,
and to develop strategies for controlling and
eradication (Murray, 2003)

Assumptions of the Model:

1. Constant Population, N
2. Everything that happens to an individual can

affect others
3. Treating individuals can benefit others

Now, if some infected individuals are introduced
into the large in size constant population, we ask
about how the infection spreads within the
population as time goes on.

The population N is divided into three disjoint
classes:
Susceptible :)(tS Those who are healthy and

can catch the disease
Infected :)(tI Those who have the disease and

are capable of transmitting it
Recovered :)(tR Those who are now immune

Predicting Changes: Assume that we have enough
information about the values of S, I, and R this
time. Can we foretell what will happen to these
values as time goes on, maybe tomorrow, the day
after tomorrow, after a month or after a year?

The answer to this question depends on the idea of
understanding how S, I, and R change with time.
To make this idea more clear, let us assume that a
new disease is spreading at a rate of 0I new cases

a day. If this rate of spread continues steadily and if

there are 0S susceptible in the beginning, then the

number of susceptible we will have will decrease
by 0I each day. This means if we have 0S

susceptible today, we will have no infection today.
However, we will have 0I number of new

infections and 0S - 0I susceptible left after a day

that is tomorrow. The process continues this way,
and Table 1 summarizes the situation that we will
have in the future.

Table 1: Rate of change of the number of new
infections and the number of susceptible
individuals from t = 0 to t = n days

Days
(t)

Total number
of new

infection
(I)

Number of
susceptible
remaining

(S)

Today,
0t

0 0S

Tomorrow,
1t

0I 0S  0I

The day
after
tomorrow,

2t

0

00

2I

II




00

000

2

)(

IS

IIS




3t

0

00

3

)2(

I

II




00

000

3

)2(

IS

IIS




….. ….. ………
….. ….. ………

nt  0nI 00 nIS 

From this table we see that if 0S and 0I are the

number of susceptible and the number of infections
in the beginning, then after t days we will have:

00 )()( tItInInI 

0000 )()( tIStSnISnS  ,
where )(tI is the total number of infections after t
days from today, and )(tS is the number of

susceptible remained after t days from today.

This of course, works if the rate of spread of the
infection continues to remain 0I persons a day.

Now, we are going to determine that the quantities
S, I and R are changing through time; that is, we
will see what happens to S’, I’ and R’.

Rate of Recovery: Recovery is getting free of the
infection through time. Someone who catches a
disease will remain sick for the life time of the
disease and then will recover. Suppose the
infection period of the disease is j days. Then, we
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get the following groups of persons from the whole
infected population:

1. Some who have been infected today, less than
one day

2. Some who have been infected between one
day and two days

3. Some who have been infected between three
and four days

4. Some who have been infected for j days

Those who have been infected for j days will
recover today due to the fact that the life time of
the illness is j days.

Assumption: There are j groups of the same size
of infected people
Therefore, in each of the j days j/1 of the total
number of the infected people will recover. This
means IbRIjiR  )/( , where jb /1 is

called Coefficient of recovery.

Rate of Transmission: Transmission rate is about
the rate of change of s during the course of the
infection. S’ obviously depends on both s and I
because it is due to the contact between the
susceptible and the infected that transmission
occurs (Michael, 2001).

Since not all the infected people I can get
themselves in contact with all the susceptible, let us
think that only i of them do. Thus there will be

IIii )/( contacts per day per susceptible. The

entire susceptible population will therefore have
ISIi )/( contacts each day.

Not all contacts but only a certain fraction k of
them cause new infections. Hence, there will be

IS)/(k Ii new infections a day.

This implies sIaIiS  IS)/(k where

)/k(a Ii is called coefficient of transmission.

The minus sign is due to the reason that S
decreases on the course of the infection.

How does the group of the infected, I vary?

The group of the infected people I , gains members
from the group of susceptible, S , and loses
members to the group of recovered, R.
I…………………………gains from S : aSI

I ………………………..loses to R : bI
Thus, bIaSII '

Summary
aSIS '

bIaSII '

bIR '

Observe that 'S 'I 0' R . This is true
because )tan( tconsNRIS  .

NUMERICAL DESCRIPTION OF THE
MODEL

To observe how these models show realities and
what points they miss, let us use numerical values
as elaborations. To do so, we need to have
numerical values of the coefficient of transmission
and the coefficient of recovery first. Consider the
disease measles; an individual acquiring measles
and passing it on to another individual will have an
average interval of 25/1 years and 25/1 is
approximately equal to 14 days.

Assuming steady propagation of the disease,
th14/1 of the population in the infected

compartment will recover each day. Thus,
.14/1b

The range of numbers used in the study of
epidemics lies between 0 and 1 inclusive/exclusive.
We are now free to choose

.00001.0
000,100

1
a

The rates of changes of the quantities can be now
calculated if initial conditions are given. Suppose
now we have the following arbitrary data of initial
conditions for measles in a given community
today:

600,2:

400,2:

000,50:





R

I

S

0,

000,55




tToday

RIS

These are the data we have today. Now, we are
going to calculate and see what will happen to each
group tomorrow, the day after tomorrow, etc.

Tomorrow, t = 1

2771171600,2

171)400,2(
14

1

'
01

'





RRR

bIR

800,481200000,50

1200)400,2000,5000001.0(
'

01

'





SSS

aSIS

34291029400,2

10291711200
'

01

'





III

bIaSII

By tomorrow, we will have the following data:
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771,2:

429,3:

800,48:





R

I

S

1,

000,55




tTomorrow

RIS

These data of tomorrow will be the initial data for
the day after tomorrow, and the iterations will
continue accordingly.

After tomorrow, t = 2

93.301593.244771,2

93.244)429,3(
14

1

'
12

'





RRR

bIR

648.126,47

352.1673800,48

352.1673

)429,3800,4800001.0(

'
12

'







SSS

aSIS

422.4857422.1428429,3

422.142893.244352.1673
'

12

'





III

bIaSII

By the day after tomorrow, we will have:

93.015,3:

422.857,4:

648.126,47:





R

I

S

2,

000,55




trowAftertomor

RIS

The next day, t =3

96.361,396.346015,3

96.346)422.857,4(
14

1

'
23

'





RRR

bIR

648.837,44

2289648.126,47

2289

)422.857,4648.126,4700001.0(

'
23

'







SSS

aSIS

422.799,61942422.857,4

194296.3462289
'

23

'





III

bIaSII

The iteration continues this way until all the
infected get recovered (Table 2).

In order to see to what extent the model reflects
realities and minimizes errors, let us check it

backwards.

Now, we are going to calculate all the values back
from tomorrow to today to help us observe if we
will get the values that we started our calculations
with.

Tomorrow, t = 1

2771:

3429:

800,48:





R

I

S

2771:

3429:

800,48:

'

'

'







R

I

S

WTS: coming back to today and check if results
will agree.

Today, t = 0

07.252693.2442771

93.244
'

10

'





RRR

R

352.473,50)352.1673(800,48

352.1673
'

10

'





SSS

S

648.2000352.14283429

352.1428
'

10

'





III

I

Path: Calculating from tomorrow to today

Expected values to be obtained:

2600:

2400:

000,50:





R

I

S

Obtained values:

07.2526:

648.2000:

352.473,50:





R

I

S

Table 2: Values of S, I, R, S’, I’, and R’ calculated forward from t = 0 to t = 3 days
t S I R 'S 'I 'R

0 50,000 2,400 2,600 -1200 1029 171

1 48,800 3,429 2,771 -1673.352 1428.352 244.93

2 47,126.648 4,857.422 3,015.93 -2289 1942 346.96

3 44,837.648 6,799.422 3,361.96 - - -
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Differences

93.73

352.399

352.473





R

I

S





Where have the differences come from?

It is reasonable for us to think that these differences
have been the result of either flaw in the model or
differences in the rates in the time interval we
calculated the numbers. And to determine which of
these is the cause of the differences in the results
when we go forward and backward, let us try
calculating at shorter intervals than we did and see
if there will be decrements in the gaps of the
results. Since the number of susceptible, the
number of infected, and the number of recovered
are all functions of time, it will be wise to think
that the results we will get by calculating at a
shorter time interval than we did will bring about
some improvements in correcting the discrepancies
of the results. Until this time, we have been
calculating the numbers at a time interval 1t ,
i.e., once a day or once in every twenty four hours.
However, the rate of transmission and the rate of
recovery of the disease cannot be exactly the same
each and every day. Thus it will be better to check
twice, thrice, four times, and even ten or hundred
times a day to get relatively better results that
maybe close to exact values.
Now, let us again consider the initial data we
considered in the beginning and calculate the rates
of changes at a lesser interval of time

)1.0( t than before and check the changes.

1.0

600,2

400,2

000,50

0

0

0






t

R

I

S


171

1029

1200

0
'

0
'

0
'







R

I

S

1.0t Means we check the rtes of changes every
six minutes a day.

1.17)1.0(171.

9.102)1.0(1029.

120)1.0(1200.

'

'

'







tRR

tII

tSS







9.27029.1022600)1.0(

9.25029.1022400)1.0(

880,49120000,50)1.0(

01

01

01





IRtR

IItI

SStS






67.106978.17845.1248

78.178)9.2502(
14

1

45.1248

)9.2502)(49880)(00001.0(

1111
'

11
'

111
'








bIIaSI

bIR

IaSS

Now, t = 0

2600:

2400:

000,50:





R

I

S

171

1029

1200

0
'

0
'

0
'







R

I

S

After t = 0.1 hour (6 minutes)

9.2702:

9.2502:

49880:





R

I

S

78.178:

67.1069:

45.1248:

'

'

'







R

I

S

Path: Calculating from t = 0.1 to t = 0

1) Expected values to be obtained:

2600:

2400:

000,50:





R

I

S

We now use the data at t = 0.1 as our initial values
and calculate the values back to t = 0.

878.17)1.0(78.178.

967.106)1.0(67.1069.

845.124)1.0(45.1248.

'

'

'







tRR

tII

tSS







022.2685878.179.2702

933.2395967.1069.2502

845.50004)845.124(49880

10

10

10






RRR

III

SSS






2) Obtained values:

022.2685:

933.2395:

845.50004:





R

I

S

3) Differences

022.852600022.2685

067.42400933.2395

845.4000,50845.50004





R

I

S





Differences of going forward and backward at t
= 1

93.73

352.399

352.473





R

I

S




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Differences of going forward and backward at t
= 0.1

022.85

067.4

845.4





R

I

S





From the present study, it can be concluded that the
discrepancies are so small when t = 0.1 that the
results are almost the same when we go forward
and when we go back ward. Therefore, it is
possible to come to exact values of the S-I-R model
by calculating the values at very shorter intervals
of time due to the fact that the rates of changes of
the infectious diseases cannot be the same over the
whole course of a day.
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