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Abstract: Climate change has led to a decline in agricultural production due to erratic weather patterns, 

compromised crop yields and population pressure on arable land. Sub-Saharan Africa is most vulnerable to 

climate change due to its geographical location, increase in population, destruction of the forests and other 

agricultural malpractices. This is a threat to livelihoods, food systems, and increase in malnutrition and shocks 

in food prices. This study examines the influence of climatic factors on the technical efficiency of agricultural 

production in Sub Saharan Africa using time series data for 25 years from 1991 to 2015 selected from nine 

countries. The data envelopment analysis estimates technical efficiency with input variable as agricultural land 

and output variable as agricultural value-added. The panel data analysis response variable is the technical 

efficiency scores. Predictor variables were population, forest area, temperature, rainfall, and greenhouse gases. 

In the last 25 years, there has been an increase in population, agricultural land, temperature, and greenhouse 

gases with a decrease in forest area and rainfall. Temperature, forest area, and greenhouse gases showed 

significant influences on the technical efficiency of agricultural production. The intricate nature of climate 

change requires significant efforts to reverse the trend being observed and boost agricultural production 

efficiency. 
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1. Introduction 

The last two decades have witnessed a drastic 

change in climatic conditions that have led to a 

decline in food production. Climate change is 

taunted to increase the frequency and intensity of 

disasters, disruption of food production and 

livestock rearing. This has raised concern among 

public policymakers and interest groups due to 

uncertainty in food security and agricultural 

sustainability (Eniko et al., 2018). Climate change 

is one of the several changes affecting food 

systems and this varies between regions and the 

different social groups within a region. The threat 

of global food shortage is evident due to a number 

of factors: population pressure, water scarcity, land 

degradation, frequent droughts, declining soil 

fertility, lack of credit facilities, poor agronomic 

practices, poor seed quality, pests, weeds and 

incidence of diseases (Abera et. al., 2018; Nsiah 

and Fayissa, 2019; Popp et. al., 2019). African is 

already overburdened with food insecurity, poverty 

and low adaptive capacity but climate change is 

projected to increase the vulnerability and burden 

(Muller et. al., 2011). The models that derive the 

relationship between environmental conditions and 

production systems project a continued decline in 

crop yields due to climate change (Ray et. al., 

2019) with traditional rain-fed agriculture facing 

more climate-related risks (Eniko et al., 2018). 

Smallholder systems in Africa will be the most 

compromised in agriculture production due to little 

adaptive capacity to climate change (Muller et. al., 

2011). In Asia and Latin-America, there is 

improved food security that has also reduced the 

prevalence of undernourishment (Popp et. al., 

2019). Smallholder farmers account for 80% of all 

the farms in SSA employing     million directly 

and 70% of the smallholder farmers being women. 

Subsistence farming is a key employer with 76 % 

of the population in Botswana, 85% in Kenya and 

90% in Malawi depending on agriculture (AGRA, 

2014). The future impacts and exposure to climate 

variability and extremes are expected to increase 

with time (FAO, 2018). Food systems are changing 

rapidly due to globalization and urbanization with 

an increasing population (Gregory et al., 2005; 

Nsiah and Fayissa, 2019). This is compounded by 
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the expected growth of     in the SSA population 

by the year      projected to be 1.5 billion (Nsiah 

and Fayissa, 2019) and an additional of 2.4 billion 

people in the world by 2050 (Islam and Wong, 

2017). The rate of population growth exceeds the 

agricultural production due to declining land size, 

climate change and other vulnerabilities facing 

farmers (Nsiah and Fayissa, 2019). Worldwide, 

    million people are undernourished, with     

million in SSA and     million are in Africa 

(Islam and Wong, 2017; FAO, 2018). 

The risks for African agriculture and food 

production are due to anthropogenic climate change 

with statistical, process-based and econometric 

models indicating negative and positive impacts on 

agriculture. The underlying assumptions in the 

climate change projections and its impact on food 

production are greenhouse gas emissions, 

biophysical and socio-economic conditions. 

Climate change has increased the global mean 

annual air temperature by 0.74 °C and atmospheric 

greenhouse gases during the last 100 years 

(Tokunaga, et al., 2015). The vulnerability of the 

African continent to the effects of climate change 

are already evident, with predictions indicating that 

Africa is warmer compared to the global average. 

Temperature and rainfall are two key determinants 

of agricultural production and food security (Abera 

et. al., 2018). Climate change is worsening 

agricultural production in Africa due to erratic 

weather patterns and extreme weather events that 

decrease the average yields (AGRA, 2014).  

The agricultural production technical efficiency 

(TE) study found that agricultural land, arable land, 

rural population, average precipitation, land under 

cereal production and economically active 

population working in the agricultural sector, 

access to credit and agricultural research influence 

TE (Nsiah and Fayissa, 2019). An estimated 2.7 

million hectares can be irrigated, but only 11% was 

equipped for irrigation in 2001 (FAO, 2018). A 

survey from 28 among 47 countries in SSA 

indicated that 75% of the labour force worked in 

household enterprises and the agricultural sector 

(FAO, 2018) with households that are food secure 

being TE and productive (Oyetunde-Usman and 

Olagunju, 2017). The future maize yields in 

Ethiopia are either increasing or decreasing based 

on the region (Abera et. al., 2018) while Ngango 

and Kim (2019) noted that coffee production TE in 

Rwanda depends on technological adoption. 

An input-oriented Data Envelopment Analysis 

(DEA) employed to examine the TE of maize 

production in northern Ghana noted that efficiency 

can further be boosted through formal and informal 

educational platforms to educate the farmers on 

improved cultivation practices. The DEA employed 

various variables, fertilizer consumption, 

household size, household labor, maize plot size, 

age of respondent, among other variables (Abdulai 

et. al., 2018). The mean difference between food 

secure and insecure households TE is       and 

was found to be statistically significant among the 

agriculture households in Nigeria (Oyetunde-

Usman and Olagunju, 2017). A study on the 

African agriculture and food production TE found 

that it has decreased significantly over time 

(Ogundari, 2014). The employment of the right 

combination of productive resources to achieve 

food sustainability is important for African 

countries (Abdulai et. al., 2018). The technically 

efficient food producers are more food secure to 

non-technically significant producers. African 

countries need to continue making agriculture a 

critical component as it’s the principal source of 

food, livelihood and a channel to reduce poverty 

and attain food security (Ogundari, 2014). 

A panel data analysis model was used to estimate 

the impact of global warming-induced climate 

change on agricultural production in Japan. The 

results indicated that rising precipitation and 

temperature and decreasing solar radiation reduced 

rice production in Japan. A dynamic panel analysis 

on rice, vegetable and potato showed a decline in 

production. An increase of a degree in mean annual 

temperature reduces rice production by 5.8% and 

3.9%, and potato production by 5% and 8.6% in the 

short and long term, respectively (Tokunaga et al., 

2015). In Burkina Faso, an increase in temperature 

reduced the production of millet, maize and 

sorghum while an increase in rainfall and 

precipitation increased the production of the cereals 

(Nana, 2019). 

The goal of this study was to assess and identify 

the climatic factors that influence technical 

efficiency of agricultural production in SSA 

through the DEA model and panel data analysis. 

Climatic risks are changing the agricultural 

production landscape in SSA with a reduction in 

crop yields to cater for the increasing population. 

An analysis of the relationship between the 

environmental conditions and production system is 
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important to understand the influence of climatic 

risks on agricultural production efficiency. The 

intent is to understand to what extent climatic 

conditions are influencing the agricultural 

sustainability and food systems in SSA. We found 

no similar study that has considered agriculture 

value-added and agricultural land size in estimating 

TE among SSA countries and use of forest area as 

a predictor variable in panel data analysis. Forest 

cover is key in absorbing greenhouse gases while 

agricultural value-added is an indicator of the 

interplay between the inputs and outputs in the 

agricultural production systems. 

2. Materials and Methods 

The two-step DEA model was applied to estimate 

the agricultural production TE among the selected 

countries in SSA. The first step is to estimate the 

efficiency scores on agricultural production. The 

second step performs the panel data analysis to 

estimate which climate variables have an influence 

on the agricultural production TE scores. The study 

covers a period of 25 years from      to the year 

     with countries sampled from SSA. The DEA 

input variable is agricultural land and the output 

variable is the agricultural value-added, with data 

sourced from FSP (2020). The five climate change 

variables are forest area from World Bank portal 

(World Bank (2020)) while rainfall, temperature, 

population and greenhouse gases are from climate 

watch data (CWD, 2020). The study has two 

input/output variables. Therefore at least 8 

Decision-Making Units (DMU) were required as 

indicated by Ntwiga (2020). The study population 

has 28 SSA countries with an overall food security 

score of between 34.3 and 67.3% (Economist 

Intelligent Unit, 2020). A total of top 9 DMUs with 

no missing data points were selected from the 28 

countries to form the study sample. The countries 

include Benin (BEN), Botswana (BWA), Burkina 

Faso (BFA), Cameroon (CMR), Ethiopia (ETH), 

Ghana (GHA), Kenya (KEN), Mali (MLI) and 

Nigeria (NGA) (Economist Intelligent Unit, 2020). 

The efficiency scores were analyzed using DEA. 

Then, the results were assessed using descriptive 

statistics and econometrics model. The influence of 

climatic factors on TE of agricultural production 

was estimated using regression panel analysis. The 

efficiency scores summary statistics were grouped 

into four periods; 1991-2000, 2001-2010, 2011-

2015 and 1991-2015. The purpose was to check if 

any significant changes can be attributed to these 

time segments compared to the overall period. In 

the determinant of TE, four models were derived 

where model M1 was the two-dimensional 

variables panel analysis. Model M2 and M3 

captured one-way effect controlling for the year 

and country, respectively while M4 captured two-

way effects controlling for both year and country.  

2.1. Variables definition and measurement 

The DEA input and output variables resulted to the 

TE scores as the output variable. In the panel 

analysis, the TE scores were the response variable 

and climate factors were the predictor variables. 

The study variables and their descriptions for step 

one DEA model and the step two-panel analysis are 

presented in Table 1. In the DEA model, the input 

and output variables estimate the TE of agricultural 

production. In the panel data analysis, the 

efficiency scores are the response variable, while 

the five climate change variables are the predictor 

variables. The goal is to assess the influence of the 

climatic factors on TE of the agricultural 

production in SSA. 

Table 1: Data Envelopment Analysis and panel regression models variables 

Variable Name Description 

Agricultural land (AL) – Input 

variable 

Percentage of total land that is arable, used for permanent crops, and used for 

permanent pastures 

Agriculture value-added (AVA) 

- Output variable 

Net output for the agriculture sector, forestry, hunting, cultivation of crops, fishing and 

livestock production, after adding up all outputs and subtracting intermediate inputs 

(Value added is outputs minus inputs) 

Forest Area (FA) Land under natural/planted trees (5 meters), whether productive or not 

Greenhouse Gases (GHG) Total including land-use change and forestry/agriculture 

Population (POP) People living in the country as defined by the national statistics office 

Rainfall (RN) Average annual rainfall observed in the country 

Temperature (TP) Average annual temperature observed in the country 
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2.2. Data envelopment analysis 

The non-parametric DEA technique was applied to 

estimate the efficiency scores of a DMU relative to 

other DMU. The Charnes, Cooper and Rhodes 

(CCR) model is the basic DEA technique with the 

Constant Return to Scale (CRS), which assumes no 

significant relationship between the scale of 

operations and efficiency (Charnes, et al., 1978). A 

modification of CRS by (Banker et al., 1984) 

became the Banker, Charnes and Cooper (BCC) 

model which accommodates the variable return to 

scale (VRS). The TE entails overall TE estimated 

by the CRS. In the DEA, an efficient frontier is 

created that evaluates the efficiency of a DMU and 

is designed to maximize the relative efficiency of 

each DMU. The efficiency score is estimated as the 

ratio of weighted outputs to weighted inputs for 

each variable of every DMU in order to maximize 

its efficiency score (Ntwiga, 2020; Abel and Bara, 

2017). Weights were determined by solving the 

following linear programming problem. 

                  
    
      

    
      

                     [1] 

                
    
     

    
     

                            [2] 

                           

Where, 

    is the output for the     country at     year 

with weight     

    is the input for the     country at     year with 

weight    

s and m are the number of countries for the output 

and input variables respectively; 

k is the number of years  

   is the efficiency score to be maximized 

The maximal efficiency score is equal to 1 and the 

lower values indicate relative inefficiency of 

analyzed objects (Ntwiga, 2020). We apply the 

output-oriented DEA model to estimate the 

efficiency scores of agricultural land used to 

produce agriculture value addition. 

2.3. Panel data analysis 

The panel regression model response variable is the 

TE scores with the predictor variables being GHG, 

FA, POP, RN and TP as explained in Table 1. The 

panel data comprises of nine countries from SSA, 

with 25 annual data points for five predictor 

variables and one response variable. The equation 

for the panel model is indicated below. 

                                  

                           [3] 

Where, 

     is the TE scores of country   and time    

                      and      represent the 

forest cover, greenhouse gases, population, rainfall 

and temperature in country   at time  , respectively 

3. Results and Discussion 

The results were analyzed in two steps. Efficiency 

scores of two-dimensional variables, individual and 

time period, were computed using DEA. Then, the 

panel data of computed efficiency score regressed 

on the explanatory variables to find the 

determinants of TE. The descriptive statistics 

provide the summary statistics for the variables in 

Table 1. The diagnostic tests for the panel data 

comprising nine countries, for 25 years with five 

predictor variables were performed and the data did 

not exhibit multi-collinearity but heteroscedasticity 

and autocorrelation were observed. The panel AR 

package and function (Panel Regression with AR 

(1) Prais-Winsten correction and panel-corrected 

standard errors) in R statistical software were used 

to correct for heteroscedasticity and 

autocorrelation. 

Table 2 presents the summary statistics for the nine 

countries based on the mean, standard deviation 

and percentage change of the two DEA variables 

(AVA and AL) and the five-panel regression model 

variables (GHG, FA, POP, RN and TP). Nigeria 

had the highest GHG production on average in the 

25 years followed by Cameroon and Ethiopia. The 

ratio of AVA to AL was an indicator for the TE 

with Benin having a ratio of one-to-one, Botswana 

had a ratio of one-to-fourteen and Ethiopia's ratio 

was one-to-less than one. These ratios indicated the 

efficiency levels with Ethiopia being more TE 

based on the selected variables among the nine 

countries in the sample. The average temperature 

did not vary much across the nine countries during 

these 25 years but major variations were observed 

in mean rainfall amounts. The highest average 

rainfall was observed in Cameroon, followed by 

Ethiopia, Nigeria and Benin. Nigeria had the 

highest population, followed by Ethiopia, Kenya 

and Ghana. Cameroon had the highest forest area, 

then Benin and Ghana with Mali having the lowest 

forest area. 
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The variables summary for the 25 years among the 

nine countries indicates a decrease in forest area, 

rain and agriculture value addition with an increase 

in population, greenhouse gases, agricultural land 

and temperature. This is a paradox as population 

increase requires more food that led to agricultural 

land increase that increases agricultural production 

and in the process of reducing forest cover. The 

increase in greenhouse gases and temperature and 

reduction of rainfall complicates the agricultural 

production due to the compound nature of climate 

change. Nsiah and Fayissa (2019) observed that the 

SSA population is expected to increase by 22% to 

1.5 billion by 2050, to exceed agricultural 

production and declining agricultural land. This 

study noted that population increase far exceeds the 

growth in agricultural land which will further lead 

to food security vulnerabilities in the short and long 

term. An increase in temperature by 1.37% is 

similar to observations by FAO (2018) that Africa 

is becoming warmer compared to the rest of the 

globe. On average, among the nine countries 

between 1991 and 2015, forest cover had reduced 

by 20.85%, rainfall by 17.49% and agricultural 

value-added by 23.06% while the population, 

greenhouse gases, agricultural land, temperature 

increased by 90.81, 46.94, 14.93, 1.37%, 

respectively which agrees with the sentiments from 

Tokunaga et al. (2015). 

 

Table 2: Summary statistics of variables in DEA and panel analysis  

Variable Statistic BEN BWA BFA CMR ETH GHA KEN MLI NGA Mean 

FA Mean 43.87 22.18 21.51 45.39 13.39 39.53 7.21 4.64 13.08  

 SD 3.70 1.61 1.51 3.43 0.89 0.92 0.49 0.48 3.31  

 % -24.25 -21.17 -20.29 -21.91 -16.52 7.88 -4.22 -28.68 -58.44 -20.85 

GHG Mean 21.89 66.66 29.92 192.47 134.89 40.81 51.24 32.09 402.48  

 SD 1.84 29.48 4.68 21.07 25.95 13.70 41.02 6.00 30.21  

 % 26.59 117.6 59.73 52.13 70.96 46.74 -55.50 87.23 16.97 46.94 

POP Mean 7.65 1.81 13.00 16.88 73.42 20.81 34.74 12.43 134.75  

 SD 1.65 0.23 2.78 3.28 15.21 3.86 7.02 2.74 25.48  

 % 105.4 55.94 100.12 89.33 100.5 83.40 95.36 101.9 85.40 90.81 

RN Mean 87.68 31.56 66.28 131.06 67.30 95.97 55.96 26.55 95.29  

 SD 8.58 6.53 5.90 8.97 5.78 8.80 12.87 3.10 7.56  

 % -25.50 -36.25 -8.21 -11.81 8.86 -22.93 -47.83 6.51 -20.22 -17.49 

TP Mean 27.87 22.27 28.68 24.91 23.13 27.60 25.20 28.87 27.25  

 SD 0.31 0.38 0.30 0.24 0.35 0.26 0.70 0.35 0.31  

 % 2.95 5.37 1.95 1.50 4.17 2.71 -9.95 1.89 1.71 1.37 

AL Mean 28.15 45.68 39.29 19.71 34.47 63.99 47.57 31.70 76.76  

 SD 4.31 0.12 3.82 0.52 5.51 4.86 0.65 2.44 2.91  

 % 64.47 0.39 26.7 6.56 -28.91 23.43 2.8 28.2 10.75 14.93 

AVA Mean 28.89 3.24 35.41 17.44 49.10 35.75 29.28 37.88 31.43  

 SD 4.18 0.93 2.72 3.29 7.21 7.76 2.79 2.89 7.17  

 % -27.74 -49.37 8.07 -35.26 -36.05 -53.93 18.34 1.6 -33.2 -23.06 

Note: Percent (%) was the change of the variable from the year 1991 to 2015 

Forest area = FA, Greenhouse gases = GHG, Population = POP, Rain = RN, Temperature =TP, agricultural land 

= AL, agricultural value-added = AVA 

 

In table 3, Ethiopia had generally the highest 

average efficiency scores followed by Mali and the 

lowest efficiency scores were observed in 

Botswana as indicated in Table 3. In the 25 years, 

the efficiency scores in descending order of country 

were Ethiopia (0.971), Mali (0.816), Benin (0.708), 

Burkina Faso (0.617), Cameroon (0.598), Kenya 

(0.420), Ghana (0.378), Nigeria (0.277) and 

Botswana (0.047).  The difference between 

Ethiopian and Botswana TE was about 92.4%, 

which is a wide margin for TE of agricultural 

production of the two countries. TE of Kenya, 

Ghana, Botswana and Nigeria were below 50% 

during the segmented period. The major difference 

was observed between the country with the lowest 

and highest TE ranging between 4.7% and 97.1%. 

Between 1991 and 2015, the overall change in TE 

showed a decline. Highest negative change in TE 

was observed in Ghana, followed by Benin and 
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Botswana while the highest positive change was 

observed in Kenya and Ethiopia. 

 

Generally, the technical efficiency of agricultural 

production among the selected countries is 

decreasing trend with an average of 3.6%. The 

percentage change of efficiency between 1991 and 

2015 ranged from -47.97% to 60.47%. Similar 

sentiments were also noted by Ogundari (2014) 

where TE in Africa has decreased drastically over 

time.

 

Table 3: DEA Technical efficiency scores of Sub-Saharan countries in the last 25 years 

Variable Statistic BEN BWA BFA CMR ETH GHA KEN MLI NGA 

1991-2000 Mean 0.801 0.051 0.558 0.599 0.947 0.409 0.376 0.771 0.252 

 SD 0.138 0.009 0.057 0.122 0.113 0.042 0.037 0.073 0.030 

 Min 0.585 0.043 0.442 0.407 0.694 0.353 0.327 0.674 0.214 

 Max 1.000 0.068 0.634 0.844 1.000 0.482 0.443 0.905 0.297 

2001-2010 Mean 0.664 0.043 0.671 0.604 1.000 0.402 0.424 0.790 0.333 

 SD 0.038 0.006 0.045 0.068 0.000 0.065 0.044 0.037 0.065 

 Min 0.587 0.033 0.595 0.509 1.000 0.330 0.363 0.743 0.248 

 Max 0.719 0.051 0.731 0.703 1.000 0.490 0.484 0.858 0.459 

2011-2015 Mean 0.608  0.045 0.627 0.582 0.961 0.269 0.499 0.961 0.218 

 SD 0.035 0.003 0.017 0.033 0.058 0.023 0.035 0.049 0.009 

 Min 0.582 0.042 0.603 0.539 0.870 0.245 0.454 0.896 0.211 

 Max 0.666 0.049 0.639 0.626 1.000 0.306 0.552 1.000 0.233 

1991-2015 Mean 0.708 0.047 0.617 0.598 0.971 0.378 0.420 0.816 0.277 

 SD 0.120 0.008 0.069 0.087 0.077 0.074 0.060 0.092 0.065 

 Min 0.582 0.033 0.442 0.407 0.694 0.245 0.327 0.674 0.211 

 Max 

% 

1.000 

-38.76 

0.068 

-29.70 

0.731 

18.90 

0.844 

-15.31 

1.000 

25.40 

0.490 

-47.97 

0.552 

60.47 

1.000 

10.48 

0.459 

-15.92 

Note: SD = Standard deviation, Min = minimum value, max = maximum value 

Percent (%) is the change of the variable from the year 1991 to 2015 

 

 

The results presented in Table 4 highlights only the 

countries whose results are statistically significant. 

Model 1 showed that a unit increase in temperature 

and forest area increased the technical efficiency by 

3% and 0.7%, respectively while a unit increase in 

greenhouse gases decreased technical efficiency by 

0.03%. The predictor variables explained 73.94% 

variations in the efficiency. In model 2, a unit 

increase in greenhouse gases decreased efficiency 

by 0.054%, while a unit increase in temperature 

and forest area increased efficiency by 3.1 and 

0.84%, respectively. Controlling for the year 

significantly increased the magnitude of 

temperature and forest area and reduced the 

magnitude of greenhouse gases in influencing 

efficiency. When the year 1992 is compared to that 

of 1991, technical efficiency was reduced by 4.5%. 

The influencing efficiency of temperature change 

was 3.01% in Model 1 while 3.11% in Model 2. 

Similarly, the influencing efficiency of forest area 

change was 0.663 % and 0.835% in Model 1 and 2, 

respectively, in Table 4. The influencing efficiency 

of greenhouse gases in model 1 was 0.034 while in 

model 2 it was 0.054 as indicated in Table 4. The 

predictive power of the model 1 (73.94%) had been 

reduced to 66.22% in model 2 after controlling for 

the year. The changes from year to year reduced the 

predictive power of the model. 

 

In model 3, the one-way effect of the country, there 

is an increase in efficiency by 0.882% when forest 

area increases by one unit. Compared to Benin, 

technical efficiency of Botswana and Ghana has 

been reduced by 43.56% and 32.8%, respectively.  

On the other hand, technical efficiency of Ethiopia 

and Mali has been increased by 44.28% and 

49.96%, respectively with an overall R-squared of 

89.68%. In model 4, the two-way effect of country 

and year showed that a unit increase in forest area 

significantly increased efficiency by 1.58%. 

Controlling for the year showed significant changes 

on the influence of predictor variables on technical 

efficiency in agricultural production from the year 

2002 to 2015.  
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AGRA (2014) observed that an increase in 

greenhouse gases in the last 100 years, which has 

worsened agricultural production in Africa due to 

erratic weather patterns. The study found an 

increase in the greenhouse gases and temperature 

and they reduced and increased TE respectively in 

the last 25 years. Muller et al. (2011) noted that 

temperature and rainfall changes are the two major 

determinants of agricultural production.  On the 

other hand, rainfall did not influence the technical 

efficiency significantly although the rainfall 

amount declined in the last 25 years. The technical 

efficiency of agricultural production in selected 

countries was decreasing in the last 25 years with 

an average of 3.6%. Population increase far 

exceeds the growth in agricultural land which will 

further lead to food insecurity in the short and long 

term.  
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Table 4: Panel data analysis results of five selected variables 

Variables Model 1 Model 2 Model 3 Model 4 

Greenhouse gases                                    

                                     

Rain                             

                                     

Temperature                                    

                                    

Forest Area                                      

                                     

Population                              

                                     

Factor (Year) 1992            

             

Factor (Year) 1993             

             

Factor (Year) 2002              

             

Factor (Year) 2003             

             

Factor (Year) 2004             

             

Factor (Year) 2005            

             

Factor (Year) 2010            

             

Factor (Year) 2013            

             

Factor (Year) 2014            

             

Factor (Year) 2015            

             

Factor (country) BWA                        

                     

Factor (country) ETH                      

                     

Factor (country) GHA                       

                     

Factor (country) MLI                     

                     

Constant term                                 

                                     

R-squared                             

Wald statistic                                          

Total Obs.                 

Significance codes: '*' 0.05, '**' 0.01, '***' 0.001 

4. Conclusions and Recommendation 

A significant decrease in technical efficiency of 

agricultural production has been observed in 

selected SSA countries with an average downward 

trend of 23.06% for the last 25 years. Temperature 

and forest cover had a significant and positive 

influence on efficiency and greenhouse gases had a 

significant and negative influence on efficiency. 

Rainfall and population changes did not 
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significantly influence technical efficiency. In the 

last 25 years, technical efficiency declined while 

greenhouse gases, temperature and agricultural land 

increased due to population pressure and climate 

change. The increase in population and agricultural 

land reduced forest coverage with climatic changes 

influencing rainfall amount. The agricultural value 

addition decreased during this period, an indication 

that farmers are becoming less efficient in adding 

value to agricultural production even in the face of 

climatic risks and population increase. The paradox 

observed was, the increase in population increased 

greenhouse gases and agricultural land and reduced 

forest cover that in turn reduced climatic mitigation 

with an increase in temperature and reduction in 

rainfall.  

Therefore, there is need for concerted efforts to 

increase agricultural value addition and adopt more 

efficient agricultural practices. This will reduce 

deforestation, have sustainable agricultural food 

production for the increasing population and deal 

with the adverse effects of climate change in SSA 

countries.  
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