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ABSTRACT 

An inviscid, unbounded, collisionless, gravitating, rotating and heat conducting anisotropic 

plasma medium which is drifting is considered. The medium is assumed to be embedded in a 

strong magnetic field. A general dispersion relation is derived using normal mode analysis and 

its various limiting cases are discussed, compared with similar earlier results for a non-drifting 

model, and some disagreements are indicated. The dispersion relation reveals the existence of 

five waves. These different wave modes are discussed in some particular cases analytically. It is 

found that in the case of parallel propagation all the five waves propagate. When the axis of 

rotation is across the magnetic field, the modified entropy wave and the modified anisotropic 

Alfven wave are independent of rotation, gravitation and heat flux. It is shown that the drift 

velocity has no effect on the stability of these waves but their phase velocities are found to be 

altered by the drift velocity; the forward propagating modes being increased and the backward 

modes decreased. The other three waves are affected by gravitation, rotation, drift and parallel 

component of the heat flux. It is further shown that only two waves propagate in the 

perpendicular direction. The propagating wave modes in this particular direction are not affected 

by the drift velocity since wave normal is transverse to the direction of flow.  
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1. INTRODUCTION 

Propagation of waves and instabilities are studied in various collective processes in gaseous 

plasma because of their possible importance for a number of applications in space and 

astrophysical plasmas. These plasmas are usually self-gravitating, rotating and embedded in a 

magnetic field. The gravitational instability is a fundamental concept of modern astrophysical 

plasma and is connected with the fragmentation of interstellar matter in star formation. It appears 

to be necessary to investigate the stability of gravitating gas cloud to understand the origin of star 

formation. Jeans (1902) first studied this instability problem and showed that an infinite, 

homogeneous, self-gravitating fluid to be unstable for all wave numbers less than the critical 

Jeans wave number. Chandrasekhar (1961) used collision dominated magnetohydrodynamic 

(MHD) equations to study the effect of magnetic field and rotation on the gravitational instability 

and found that both magnetic field and rotation leave the Jeans wave number unaltered. The 

effect of rotation on the onset of gravitational collapse and the growth rate of magnetorotational 
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instability of a finite electrically conducting viscoelastic medium under both strongly and weakly 

coupled plasma limits for transverse and longitudinal modes of wave propagation is investigated 

by Dhiman and Sharma (2014) and found that rotation reduces the growth rate of Jeans 

instability. It has been shown that the magnetorotational instability plays a crucial role in driving 

plasma turbulence in accretion disks and is believed to be responsible for angular momentum 

transport, which solves a long standing puzzle how the materials in the accretion disks fall 

inward to feed the stars or the black holes in the center (Velikhov, 1959; Chandrasekhar, 1960). 

In many space and astrophysical situations the plasma is collisionless. However, the fluid 

description for a rarefied plasma in a magnetic field can be used, since a strong magnetic field 

can replace the randomizing role of collisions and the collisional isotropic pressure becomes 

anisotropic pressure tensor. In such situations the Chew et al. (1956) equations are used with 

certain limitations when the heat flux vector is neglected and lead to different kinds of waves and 

instabilities like the Alfven, slow and fast MHD waves as well as the firehose and mirror 

instabilities. The Chew et al. (1956)  equations are derived by taking velocity moments of the 

collisionless Boltzmann transport equation assuming that the thermal heat flow along the field 

lines can be neglected. Considering the importance of anisotropic pressure plasma, various 

investigations have been carried out by the authors listed in the references (Gliddon, 1966; Kalra 

et al., 1970; Kathuria and Kalra, 1973; Chhajlani and Purohit, 1985; Yajima, 1966; Summers, 

1978; Ferriere, 2004; Shrauner, 1967; Gedalin, 1993; Gebretsadkan and Kalra, 2002; Ghildyal 

and Kalra, 1997; Chust and Belmont, 2006), all of them using double adiabatic Chew et al. 

(1956)  equations neglecting the heat flux vector. 

Gravitational instability on propagation of magnetohydrodynamic (MHD) waves in astrophysical 

plasma is investigated by Alemayehu and Tessema (2013a) by considering the effect of 

gravitational instability and viscosity with anisotropic pressure tensor and heat conducting 

plasma. Their results indicate that the transverse propagation is affected by the inclusion of heat 

conduction. For parallel propagation, they showed that the firehose mode to be unaffected 

whereas the mode corresponding to the gravitational instability in astrophysical plasma to be 

modified by anisotropic pressure tensor being stable in the presence of viscosity and strong 

magnetic field at considerable wavelengths. Alemayehu and Tessema (2013b) also studied the 

effect of viscosity on propagation of MHD waves in astrophysical plasma by considering the 
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effect of viscosity with anisotropic pressure tensor. Their results show that an astrophysical 

plasma with anisotropic pressure tensor to be stable in the presence of viscosity and strong 

magnetic field at considerable wavelengths. 

The Chew et al. (1956)  model has been extended by Whang (1971) to include the heat flux 

vector which appears in the higher velocity moments of the collisionless Boltzmann equation. 

The hierarchy of the moment equations is truncated by writing the heat flux vector in terms of 

the parameters that appear in the lower moments. The modified Chew et al. (1956) equations that 

include the heat flux vector have been used by Kalra and Kathuria (1979); Namikawa and 

Hamabata (1981) to study waves and instabilities in space plasma. It has been pointed out that 

higher order moments contribute terms some of which do not vanish in the limit of vanishing 

heat flux, and the contribution from these terms is of the same order of magnitude as the 

contribution from the other terms in the original Chew et al. (1956) equations. Following Whang 

(1971), the equations for a self-gravitating, collisionless, heat conducting plasma were used by 

Singh and Kalra (1986) to investigate the influence of these additional terms. They found that the 

gravitational instability sets in at a comparatively shorter wavelength and the growth rate is 

enhanced owing to the inclusion of these terms in the case of parallel propagation and the 

condition for instability remained unaltered when the direction of propagation is transverse to the 

direction of magnetic field. The self-gravitational instability of rotating anisotropic heat- 

conducting plasma with modified Chew et al. (1956) equations is investigated (Prajapati et al., 

2008; Ren et al., 2011). 

In all of the above studies, the plasma has been considered to be initially at rest. But, in some 

space and astrophysical situations (e.g., movement of the ionosphere, motion of the plasma along 

magnetic lines, gross motion of the surface of the sun and stars, motion of gaseous clouds in the 

interstellar medium, etc.), the plasma may also be initially drifting in a certain direction. The so-

called ”Dust Devil”, which is gravitating, rotating and drifting that is observed here on earth and 

even on Mars, may simulate this situation. Thus, in the present work, we derive the dispersion 

relation of a gravitating, rotating, heat conducting and drifting anisotropic plasma. 

The methodology we used here assumes a medium of an inviscid, unbounded, collisionless, 

gravitating and rotating heat conducting anisotropic drifting plasma which is not, to our 

knowledge considered by others. The medium is assumed to be embedded in a strong magnetic 
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field oriented along the z-axis. The plasma is supposed to drift with a uniform velocity  v0 along 

the direction of the magnetic field. The strong magnetic field replaces the randomizing role of 

collisions so that the fluid descriptions for a rarefied plasma can be used. In such assumptions the 

solution of the dispersion relation is investigated using the analytical approach as the general 

dispersion relation is too complicated with the inclusion of drift velocity. A sample of polar plot 

is drawn to illustrative phase speed variations with drift velocity using FORTRAN program.   

 The basic equations of the MHD model for a gravitating, rotating, and heat conducting inviscid 

plasma which is drifting are presented below. The general dispersion relation of the problem is 

derived in section 3. The dispersion relation is checked with similar previous results when the 

drift corrections are waved and discussed in several limiting cases analytically in section 4.  

 

2.  BASIC EQUATIONS OF THE PROBLEM 

We consider a medium of an inviscid, unbounded, collisionless, gravitating and rotating heat 

conducting anisotropic plasma which is drifting. The medium is assumed to be embedded in a 

strong magnetic field oriented along the z-axis. The plasma is supposed to drift with a uniform 

velocity  v0 along the direction of the magnetic field. The strong magnetic field replaces the 

randomizing role of collisions so that the fluid descriptions for a rarefied plasma can be used. In 

such assumptions the basic closed set of equations of the problem are written as follows.  

 

The equation of motion of the system is written as 

ρ
dv

dt
+ ∇ ∙ P-

1

4π
(∇ × B) × B-ρ∇ϕ -2ρ(v × Ω) = 0,                   -------------------------------------(1) 

 

The continuity equation reads as 

    
∂ρ

∂t
+ ∇ ⋅ (ρv) = 0,                                                                   -------------------------------------(2) 

 

Under the assumption of perfect conductivity, Ohm's law together with Faraday’s law gives the 

following induction equation  

  
∂B

∂t
  = ∇ × (v × B)                                                                      ------------------------------------(3) 
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Poisson equation for gravitational potential ϕ is written as 

 ∇2ϕ = -4πGρ.                                                                             ------------------------------------(4) 

 

The evolutions of the parallel and perpendicular pressures and heat flux vectors are described, 

respectively (Whang, 1971; Prajapati et al., 2008) as 

d

dt
(

B2 P∥

ρ3 ) = -
2B2

ρ3 n̂ ⋅ ∇ (
q∥

B
),                                                           ------------------------------------(5) 

 
d

dt
(

P⊥

ρB
) = -

1

ρ
n̂ ⋅ ∇ (

q⊥

B
),                                                                ------------------------------------(6) 

d

dt
(

B3 q∥

ρ4 ) =
3B2

2ρ3 n̂ ⋅ [
P∥P⊥

ρ2
(∇B)-B

P∥

ρ
∇(

P∥

ρ
)],                                   -------------------------------------(7) 

d

dt
(

 q⊥

ρ2 ) =
1

ρB
n̂ ⋅ [

P⊥
2

ρ2
(∇B)-B

P∥

ρ
∇(

P⊥

ρ
)],                                         -------------------------------------(8) 

Where,   n̂ = B/B is the unit vector along the magnetic field,  ρ  the plasma density,                    

d

dt
=

∂

∂t
+ v ⋅ ∇  the convective derivative, v the fluid velocity, B the magnetic field, ϕ the 

gravitational potential, and P denotes the anisotropic pressure tensor defined as  

P = P⊥I + (P∥-P⊥)n̂n̂ , 

with I the unit tensor. P⊥,  P∥, q⊥, and q∥  represent, respectively, the components of pressure and 

heat flux perpendicular and parallel to the magnetic field. G is the gravitational constant and Ω =

Ω(Ωx, 0, Ωz) represents the rotational frequency of the system. 

 

3. LINEARIZATION AND DERIVATION OF THE GENERAL DISPERSION 

RELATION 

In the linearization, we write the space and time dependent physical quantities ρ, v, B, P, q, and ϕ, 

in the form of the sum of an equilibrium and perturbed part as 

ρ = ρ0 + ρ', v = v0 + v', B = B0 + b ,  etc. 

The perturbed quantities are assumed to be small compared to the equilibrium values and the 

equilibrium values are supposed to be uniform in space and time. Using these assumptions, the 

linearized form of the Equations (1)-(8) become: 
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(
𝜕

𝜕𝑡
+ 𝒗𝟎 ⋅ 𝛁) 𝑣 ′ + ∇ (𝑃⊥

′ +
𝐁𝟎 ⋅ 𝐛

4𝜋
)

− (𝑩𝟎 ⋅ 𝛁) [

𝑃⊥
0 − 𝑃∥

0 + 𝐵 0
4𝜋

2

𝐵0
2 𝐛 − 2B0(𝑃⊥

0 − 𝑃∥
0)

𝐁𝟎 ⋅ 𝐛

4𝜋
+  𝐵0

𝑃⊥
′ − 𝑃∥

′

𝐵0
2 ] − 

ρ_{0} ∇ϕ'-2[(v_0×Ω) ρ'+ρ_{0} (v'×Ω)]=0,                                    ----------------------------------(9) 

(
∂

∂t
+ v0 ⋅ ∇) ρ' + ρ0∇ ⋅ v' = 0,                                                        --------------------------------(10) 

∂b

∂t
= ∇ × [v0 × b + v' × B0] ,                                                          --------------------------------(11) 

∇2ϕ'  = -4πGρ',                                                                               ---------------------------------(12) 

    (
∂

∂t
+ v0 ⋅ ∇) [P∥

' +
2P∥

0

B0
bz-

2P∥
0

ρ0
ρ'] = -2n̂ ⋅ ∇q∥

' +
2q∥

0

B0
n̂ ⋅ ∇bz,                       --------------------(13) 

(
∂

∂t
+ v0 ⋅ ∇) [P⊥

' -
P⊥

0

ρ0
ρ'-

P⊥
0

B0
bz] = -n̂ ⋅ ∇q⊥

' +
q⊥

0

B0
n̂ ⋅ ∇bz,                                    -------------------(14)  

(
∂

∂t
+ v0 ⋅ ∇) [q∥

' +
3q∥

0

B0
bz-

4q∥
0

ρ0
ρ'] = -

3

2
n̂ ⋅ (

P∥
0P⊥

0

ρ0B0
∇bz-

P∥
0

ρ0
∇P∥

' +
P∥0

2

ρ0
2 ∇ρ'),          -------------------(15) 

(
∂

∂t
+ v0 ⋅ ∇) [q⊥

' -
2q⊥

0

ρ0
ρ'] =

P⊥0
2

B0ρ0
n̂ ⋅ ∇bz-

P∥
0

ρ0
 n̂ ⋅ ∇P⊥

' +
P∥

0P⊥
0

ρ0
2 n̂ ⋅ ∇ρ'.                 -------------------(16) 

  

In the absence of heat flux vector, equations (13) and (14) reduce to the usual double adiabatic 

Chew et al. (1956) equations. Since, the higher order moments give some terms that are of the 

same order of magnitude as the other terms in the Chew et al. (1956) equations (Singh and Kalra, 

1986; Prajapati et al., 2008) and these terms persist in the limit of zero heat flux, we multiply 

equations (15) and (16) by α to distinguish those terms which will arise in the dispersion relation 

due to the presence of heat flux vector but do not contain it explicitly. The value of α will be 

taken to be unity in the presence of heat flux vector and zero otherwise. 

 In an unbounded homogeneous medium, any arbitrary perturbation can be Fourier analyzed and 

written in terms of plane waves of frequency ω and wave vector k. Since the unperturbed 

magnetic field has been chosen to be directed along the z-axis, the wave vector can be taken, 

without loss of generality, in the xz-plane. The harmonic space and time dependence of the 

perturbed quantities may thus be written as  

∝ exp [i(k⊥x + k∥z-ωt)],                                                                               ---------------------(17) 
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Where, the wave vector k(k⊥, 0, k∥ ))  is taken to be real. When the space-time dependence of 

the perturbations given by Equation (17) is applied to the set of linearized equations (9) to (16), 

three linear algebraic equations in terms of the amplitude components v1 ,   v2,  v3,   (where 1, 2, 

3, represent x, y, z) are obtained. In matrix form these can be written as 

 

Aijvj = 0      i,j = 1,2,3                                                                                 -----------------------(18) 

 

The components of the matrix Aij are written as follows:  

𝐴11 = (𝜔′2 − 𝑘∥
2𝑠∥

2𝛼) (𝜔′2 + 𝑘∥
2𝐴2 − 𝑘⊥

2𝑣𝑎
2 + 4𝜋𝐺𝜌

𝑘⊥
2

𝑘2
) − 𝑘⊥

2 (2𝑠⊥
2𝜔′2 +

𝑞⊥

𝜌
𝑘∥𝜔′ − 𝑘∥

2𝑠⊥
2𝑄2𝛼) 

𝐴12 = −2𝑖Ω𝑧𝜔′(𝜔′2 − 𝑘∥
2𝑠∥

2𝛼), 

A13 = k∥k⊥ [
4πGρ

k2 (ω'2-k∥
2s∥

2α)-s⊥
2 ω'2-

2q⊥

ρ
k∥ω' + k∥

2s∥
2s⊥

2 α], 

𝐴21 = −2𝑖(𝑘⊥ 𝑣0Ω𝑥 − Ω𝑧𝜔′), 

A22 = ω'2 + k∥
2A2, 

𝐴23 = −2𝑖Ω𝑥(𝑘∥ 
𝑣0 + 𝜔′), 

𝐴31 = 𝑘∥𝑘⊥ [(𝜔′2 − 3𝑘∥
2𝑠∥

2𝛼) (
4𝜋𝐺𝜌

𝑘2
− 𝑠⊥

2 + 𝑠∥
2) − 𝑠∥

2𝜔′2 + 3𝑘∥
2𝑠∥

2𝑄2𝛼], 

𝐴32 = 2𝑖Ω𝑥𝜔′(𝜔′2 − 3𝑘∥
2𝑠∥

2𝛼), 

𝐴33 = (𝜔′2 + 4𝜋𝐺𝜌
𝑘∥

2

𝑘2
) (𝜔′2 − 3𝑘∥

2𝑠∥
2𝛼) − 𝑘∥

2 (3𝑠∥
2𝜔′2 + 8𝑘∥

𝑞∥

𝜌
𝜔′ − 3𝑘∥

2𝑠∥
4𝛼). 

 

The above expressions are written by using the following notations: 

ω' = ω-k∥ 
v0 ;  the Doppler shifted frequency, 

s∥,⊥ 
2 =

P∥,⊥

ρ
 ;   the parallel, perpendicular sound speeds, 

va
2 =

B2

4πρ
;  the Alfven velocity, 

A2 = s∥
2-s⊥

2 -va
2a,       Q2 = s∥

2 + s⊥
2 ,    k2 = k∥

2 + k⊥
2 . 

 As usual, the set of equation given by equation (18) has a non-trivial solution if the determinant 

|Aij|| vanishes producing the following general dispersion relation:  
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[(ω'2-k∥
2s∥

2α) (ω'2 + k∥
2A2-k⊥

2 va
2 + 4πGρ

k⊥
2

k2) -k⊥
2 (2s⊥

2 ω'2 +
q⊥

ρ
k∥ω'-k∥

2s⊥
2 Q2α)] ×

{(ω'2 + k∥
2A2) [(ω'2 + 4πGρ

k∥
2

k2) (ω'2-3k∥
2s∥

2α)-k∥
2 (3s∥

2ω'2 +

8k∥
q∥

ρ
ω'-3k∥

2s∥
4α)] -4Ωx

2 (k∥ 
v0ω' + ω'2)(ω'2-3k∥

2s∥
2α)} -4Ωz(ω'2-k∥

2s∥
2α) {k∥k⊥Ωx(k∥ 

v0ω' +

ω'2) × [(ω'2-3k∥
2s∥

2α) (
4πGρ

k2
-s⊥

2 + s∥
2) -s∥

2ω'2 + 3k∥
2s∥

2Q2α] -(k⊥v0Ωxω'-Ωzω'2) ×

[(ω'2 + 4πGρ
k∥

2

k2) (ω'2-3k∥
2s∥

2α)-k∥
2 (3s∥

2ω'2 + 8k∥
q∥

ρ
ω'-3k∥

2s∥
4α)]} +

k∥k⊥ [
4πGρ

k2 (ω'2-k∥
2s∥

2α)-s⊥
2 ω'2-

2q⊥

ρ
k∥ω' + k∥

2s∥
2s⊥

2 α] ×

{4Ωx (k⊥v0Ωxω'-Ωzω'2)(ω'2-3k∥
2s∥

2α)-k∥k⊥ (ω'2 + k∥
2A2) [(ω'2-3k∥

2s∥
2α) (

4πGρ

k2 -s⊥
2 +

s∥
2) -s∥

2ω'2 + 3k∥
2s∥

2Q2α]} = 0                                          ------------------------ (19)    

 

4 DISCUSSION OF THE DISPERSION RELATION 

4.1 Agreement with the literature 

When the drift velocity corrections are not considered (i.e., v0 = 0, ω' = ω-k∥ 
v0 = ω), the 

general dispersion relation given by Equation(19) becomes : 

[(ω2-k∥
2s∥

2α) (ω2 + k∥
2A2-k⊥

2 va
2 + 4πGρ

k⊥
2

k2) -k⊥
2 (2s⊥

2 ω2 +
q⊥

ρ
k∥ω-k∥

2s⊥
2 Q2α)] × {(ω2 +

k∥
2A2) [(ω2 + 4πGρ

k∥
2

k2) (ω2-3k∥
2s∥

2α)-k∥
2 (3s∥

2ω2 +

8k∥
q∥

ρ
ω-3k∥

2s∥
4α)] -4Ωx

2 ω2(ω2-3k∥
2s∥

2α)} -4Ωz(ω2-k∥
2s∥

2α) {k∥k⊥Ωxω2 ×

[(ω2-3k∥
2s∥

2α) (
4πGρ

k2
-s⊥

2 + s∥
2) -s∥

2ω2 + 3k∥
2s∥

2Q2α] + Ωzω2 [(ω2 +

4πGρ
k∥

2

k2) (ω2-3k∥
2s∥

2α)-k∥
2 (3s∥

2ω2 + 8k∥
q∥

ρ
ω-3k∥

2s∥
4α)]} +

k∥k⊥ [
4πGρ

k2
(ω2-k∥

2s∥
2α)-s⊥

2 ω2-
2q⊥

ρ
k∥ω + k∥

2s∥
2s⊥

2 α] × {4ΩxΩzω2 (ω2-3k∥
2s∥

2α)-k∥k⊥ (ω2 +

k∥
2A2) [(ω2-3k∥

2s∥
2α) (

4πGρ

k2 -s⊥
2 + s∥

2) -s∥
2ω2 + 3k∥

2s∥
2Q2α]} = 0.            -----------------------  (20)                                                                      

 

This dispersion relation is similar to the one derived by? We would like to point out here that it 

seems there is an error in their dispersion relation that they missed some terms in their dispersion 
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relation given by their equation number 22. All their subsequent discussions are correct because 

they discussed the transverse and parallel propagation cases separately. Their dispersion relation 

becomes incorrect due to the missed terms, when one considers the case of oblique propagation 

where both k⊥ and k∥  are different from zero. 

In the absence of drift velocity and rotation the dispersion relation derived in the present work 

exactly agrees with the one found by? When drift, rotation and heat flux vectors are all ignored, 

the dispersion relation reduces to the one derived by? We note here also that in Gliddon’s 

dispersion relation the Alfven mode is not shown in the derivation of the dispersion relation; we 

know in such situations that one has a 6th order in ω equation which yields three MHD waves 

(slow, Alfven, and fast waves). 

The general dispersion relation of the present problem given by equation (19) is of tenth order 

polynomial (incorporating also the odd powers of ω due to the presence of drift) indicating the 

existence of ten wave modes. It is very difficult to separate these modes in the general case for 

analytical discussions in an arbitrary direction of propagation. So, we try to discuss them in 

various limiting cases. 

4.2. Longitudinal mode of Propagation (k∥ = k, k⊥ = 0)  

In the case of parallel propagation the general dispersion relation equation (19) reduces to the 

following form: The entropy wave mode (modified by the drift velocity) which is factored out is 

given by  

 

          ω'2-k2s∥
2α = 0,                                                                              ---------------------------(21) 

 

 and the other (of eight order in ω') written as 

(ω'2 + k2A2) {(ω'2 + k2A2) [(ω'2 + 4πGρ)(ω'2-3k2s∥
2α)-k2 (3s∥

2ω'2 +

8k
q∥

ρ
ω'-3k2s∥

4α)] -4Ωx
2 (k v0ω' + ω'2)(ω'2-3k2s∥

2α)} -4Ωz
2ω'2 [(ω'2 +

4πGρ)(ω'2-3k2s∥
2α)-k2 (3s∥

2ω'2 + 8k
q∥

ρ
ω'-3k2s∥

4α)] = 0.                ----------------------------(22)                                

                                                                                  

The above two dispersion relations indicate that in the case of parallel propagation direction all 

the ten wave modes propagate being affected by the drift velocity. The wave mode given by 
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equation (21) (which vanishes in the absence of heat flux vector) may be expanded and written in 

terms of ω as 

 

              ω2-2k v0ω + k2(v0
2-s∥

2) = 0.                                                ------------------------------(23) 

 

The solution of this mode is given by 

           ω± = kv0 ± s∥.                                                                         -----------------------------(24) 

 

This wave mode represents sound speed produced by the parallel pressure modified by the drift 

velocity. This is a stable mode independent of rotation, gravitation and heat flux vector. The drift 

velocity has no effect on the stability of the wave but the phase speed of this wave mode is 

increased by v0for the outgoing mode ( vph
+ = v0 + s∥ ) and decreased for the incoming mode     

( vph

-
= v0-s∥ ). Equation (22) is still of eight order in ω' which is again difficult to separate the 

modes for analytical discussion. So again we discuss them in a particular rotation axis. 

4.2.1 Axis of rotation transverse to the magnetic field (Ωx = Ω, Ωz = 0)  

The propagating waves along the direction of the magnetic field when the axis of rotation is 

chosen to be across the magnetic field may be separated in to three: 

 One is the wave mode given by equation (21) which we have already discussed.  

The second is the anisotropic Alfven wave mode modified by the drift velocity given by  

 

ω2-2k v0ω + k2(v0
2 + s∥

2-s⊥
2 -va

2) = 0.                                                       -------------------------(25) 

  

The solution of this wave mode is given by  

vph
± =v0 ± (s⊥

2 + va
2-s∥

2)
1/2

.                                                                        -------------------------(26) 
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Figure 1. The polar plots of phase speed variations with drift velocity are shown for the wave 

mode given by equation 25. The two left and right modes label by "A" are the wave 

modes for vo=0; the non-drifting case. The two left and right modes label by "B", "C" 

and "D" are the wave modes for vo=0.2, 0.3, and 0.4, respectively. The non drifting case 

is shown to be symmetric, but when the drift velocity is non zero, the left and rightward 

propagations become anti-symmetric. It is illustrated that the phase speed of the forward 

propagating mode increases with increasing drift and the backward propagating mode 

decreases with increasing drift.  

 

In this particular direction of propagation and axis of rotation, this wave mode is also 

independent of rotation, gravitation and heat flux. The firehose instability persists unaltered due 

to drift, but the phase speed is shifted by the drift velocity; forward propagation being increased 

and the backward propagation decreased by the drift velocity. 

 

The third is still of six order in ω'  expressed as 

(ω'2 + k2A2) [(ω'2 + 4πGρ)(ω'2-3k2s∥
2α)-k2 (3s∥

2ω'2 + 8k
q∥

ρ
ω'-3k2s∥

4α)] -4Ωx
2 (k v0ω' +

ω'2)(ω'2-3k2s∥
2α) = 0                                                 -------------------------(27)                                                                        

This equation incorporates wave modes affected by gravitation, rotation, drift and parallel 

component of the heat flux. The perpendicular component of the heat flux has no effect in this 

particular direction of propagation and axis of rotation. 
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4.2.2 Axis of rotation parallel to the magnetic field (Ωz = Ω, Ωx = 0) 

 In this case the dispersion relation expressed by Equation (22) becomes (excluding Equation 

(21) which is also present here) becomes  

ω4-4k v0ω3 + 2k2 (3v0
2 +  A2-2

Ω
2

k2) ω2-4k3v0 (v0
2 +  A2-2

Ω
2

k2) ω + k4 (v0
4 +  A4 +

2v0
2 A2-4v0

2 Ω
2

k2)= 0,                                                 ---------------------------(28) 

and 

ω4-4k v0ω3 + k2 (6v0
2-6s∥

2α + 4
πGρ

k2 ) ω2-k3 (4v0
2-2v0(6s∥

2α-4
πGρ

k2 )-8
q∥

ρ
) ω +

k4 (v0
4-3s∥

2α(v0
2-s∥

2) + 4
πGρ

k2 (v0
2-3s∥

2α)-8v0
q∥

ρ
) = 0.                        ----------------------------(29)                                                     

 

The above two equations contain odd powers of ω due to drift velocity. Equation (28) is affected 

by drift velocity and rotation, but gravitation and heat flux have no effect on the wave modes. On 

the other hand, equation (29) is affected by drift velocity, gravitation and heat flux, but rotation 

has no role on these modes. 

4.3. Propagation vector transverse to the magnetic ( k∥ = 0, k⊥ = k)  

In this case, the general dispersion relation reduces to (ω' = ω-k∥ 
v0 = ω since,  k∥ = 0,)  

[ω2-k2(2s⊥
2 + va

2) + 4πGρ] ( ω2-4Ωx
2)-4Ωz

2ω2  = 0                        ------------------------------(30) 

 

In this particular direction of propagation, the drift velocity has no effect on the wave modes and 

six of the ten wave modes become degenerate. The propagating modes given by equation (30) 

are not affected by the drift velocity since wave normal is transverse to the direction of flow. 

These are identical to the wave modes discussed by? To investigate the stability of the 

propagating modes give by equation (30), we may again consider two cases of rotation: 

4.3.1 Axis of rotation transverse to the magnetic field (Ωx = Ω, Ωz = 0) 

 When the axis of rotation is chosen to be in the perpendicular direction to the magnetic field, we 

obtain two propagating modes with phase speeds (vph = ω/k) given by  

                  vph
2 = 4

Ω
2

k2  ,                                                                           ---------------------------(31) 

               vph
2 = 2s⊥

2 + va
2- 

4πGρ

k2  .                                                             ---------------------------(32) 
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The wave modes given by equation (31) are the rotational modes with solutions  

vph = ±2Ω . 

These rotational modes are independent of the drift velocity, gravitation and heat flux vector and 

are stable. The wave modes given by Equation (32) are the gravitational modes also independent 

of drift velocity, rotation and heat flux vectors. The solution of these waves is given as  

           vph = ± (2s⊥
2 + va

2-  
4πGρ

k2 )
1/2

  .                                               ------------------------------(33) 

 These wave modes become unstable when  

             
4πGρ

k2 > 2s⊥
2 + va

2                                                                     ------------------------------(34) 

4.3.2 Axis of rotation parallel to the magnetic field (Ωz = Ω, Ωx = 0) 

 The solution of the propagating wave mode in this axis of rotation is given by 

      vph = ± (2s⊥
2 + va

2 +
4Ω

2

k2  -  
4πGρ

k2 )
1/2

,                                           -----------------------------(35) 

 The condition for instability is given by 

        2s⊥
2 + va

2 +
4Ω

2

k2 <  
4πGρ

k2                                                               ------------------------------(36) 

Here rotation has the stabilizing influence. 

 

5 CONCLUSION 

A medium of inviscid, unbounded, collisionless, gravitating, rotating and heat conducting 

anisotropic plasma which is drifting is considered. The medium is assumed to be embedded in a 

strong magnetic field oriented along the z-axis. The plasma is supposed to drift with a uniform 

velocity v0 along the direction of the magnetic field. The strong magnetic field replaces the 

randomizing role of collisions so that the fluid descriptions for a rarefied plasma is used. The 

basic fluid equations of the problem are linearized and the dispersion relation derived. The 

derived dispersion relation is compared with the dispersion relations of similar situations in the 

literature and some disagreements pointed out. 

The dispersion relation reveals the existence of five waves modified by the drift velocity. These 

different wave modes are discussed in some particular cases analytically where ever possible. It 

is found that in the case of longitudinal  propagation and rotation axis, the dispersion relation is 
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factored out in to two : one  affected by drift velocity and rotation while gravitation and heat flux 

have no effect on the wave modes and the other affected by drift velocity, gravitation and heat 

flux, but rotation has no role on these modes.  It is also found that, in the longitudinal mode of 

propagation, all the five waves (modified by the drift velocity) propagate. These waves, when the 

axis of rotation is chosen to be across the magnetic field, are separated in to three parts: One is 

the modified entropy wave. The second is the anisotropic Alfven wave mode also modified by 

the drift velocity. It is shown that these two waves are independent of rotation, gravitation and 

heat flux. The drift velocity has no effect on the stability of these waves but their phase velocities 

are shifted; the forward propagating modes being increased and the backward propagating modes 

decreased. The third part incorporates three waves affected by gravitation, rotation, drift and 

parallel component of the heat flux. The perpendicular component of the heat flux has no effect 

in this particular direction of propagation and axis of rotation. When the axis of rotation is 

parallel to the magnetic field, besides the entropy wave, two of the waves are affected by drift 

velocity and rotation, but gravitation and heat flux have no effect on the waves. On the other 

hand, the other two waves are affected by drift velocity, gravitation and heat flux, but rotation 

has no role on these waves. 

It is further shown that only two waves propagate in the perpendicular direction to the direction 

of the magnetic field. The propagating wave modes in this particular direction are not affected by 

the drift velocity since wave normal is transverse to the direction of flow. Such analytical 

discussion is limited here because of the unwieldy nature of the dispersion relation. Numerical 

solution of the tenth order in ω polynomial is under progress. 
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