

Explicit Pre A*-algebra

Habtu Alemayehu^{1*}, Venkateswararao, J¹ and Satyanarayana, A²

¹Department of Mathematics, CNCS, Mekelle University, P.B.No.231, Mekelle, Ethiopia (*habtua@yahoo.com).

²Department of Mathematics, A.N.R College, Gudiwada, A.P. India.

ABSTRACT

This manuscript is a study on Birkhoff centre of a Pre-A*-algebra. In fact, it is proved that Birkhoff centre of a Pre A*-algebra is also a Pre A*-algebra and identified that the centre of Birkhoff centre of a Pre A*-algebra is a Boolean algebra.

Keywords: Pre A*-algebra, Centre, Birkoff centre, Boolean algebra.

AMS Mathematics subject classification (2000): 03G25(03G05, 08G05).

1. INTRODUCTION

The notions of lattice concerned aspects were detailed conferred by Birkhoff (1948). In an outline script Manes (1993) initiated the perception of Ada, based on C-algebras by Fernando and Craig (1990).

Chandrasekhararao et al. (2007) bring in the impression Pre A*-algebra (A, \land , \lor , (–)[~]) akin to C-algebra as a reduct of A*- algebra. Venkateswararao et al. (2009) added the structural compatibility of Pre A*-Algebra with Boolean algebra. Further, Satyanarayana and Venkateswararao (2011) ascertained the thought of ideals of Pre A*-algebras. Boolean algebra depends on two element logic. C-algebra, Ada, A*- algebra and our Pre A*-algebra are standard expansions of Boolean logic to 3 truth values, anywhere the third truth value indicates an undefined one.

We recognize the Birkhoff Centre of a Pre A*-algebra and attest various associated results as well. Swamy and Murti (1981) initiated the perception of centre of a C-algebra and bear out that it is a Boolean algebra through induced operations. Furthermore, Swamy and Pragathi (2003) initiated the observation of Birkhoff's centre of a semigroup and extended the above concept for a general semigroup and proved that the Birkhoff's centre of any semigroup is a relatively complemented distributive lattice.

Momona Ethiopian Journal of Science (MEJS), V10(1):59-75, 2018©CNCS, Mekelle University, ISSN:2220-184XSubmitted on: 24-08-2017Accepted on: 09-04-2018

Let us summon up with the objective of, if S is a semigroup and there exists 0, 1 such that x = 0 and 1 x = x for all x belongs to S, then S is named a semigroup with 1. An element a in S is referred as a Birkhoff central element of S if there exit semigroups say S₁ and S₂ with 0 and 1 an isomorphism S onto S₁ × S₂ which maps a onto (0, 1). The set with Birkhoff central elements of S is referred to be Birkhoff centre of S. This conception is extended to a Pre A*-algebra with 1 and attested that the set of all central elements of a Pre A*algebra with 1 is a Pre A*-algebra.

1. Preliminaries

1.1. Definition (Chandrasekhararao et al., 2007):

An algebra $(A, \Lambda, V, (-)^{\sim})$ where A is a non-empty set with 1; Λ, \vee are binary operations and

(-) ~ is a unary operation on A satisfying:

(a) $x^{\sim} = x$ for all x in A

- (b) $x \land x = x$ for all x in A
- (c) $x \land y = y \land x$ for all x in A
- (d) $(x \land y)^{\sim} = x^{\sim} \lor y^{\sim}$ for all x, y in A
- (e) $x \land (y \land z) = (x \land y) \land z$ for all x, y, z in A
- (f) $x \land (y \lor z) = (x \land y) \lor (x \land z)$ for all x, y, z in A
- (g) $x \land y = x \land (x^{\sim} \lor y)$ for all x, y in A is called a Pre A*-algebra.
- 1.1. Example (Chandrasekhararao et al., 2007):

The set $\mathbf{3} = \{0, 1, 2\}$ by means of operations $\land, \lor, (-) \sim$ defined below is a Pre A*-algebra.

\wedge	0	1	2	\vee	0	1	2	x	x~
0	0	0	2	0	0	1	2	0	1
1	0	1	2	1	1	1	2	1	0
2	2	2	2	2	2	2	2	2	2

1.1. Note (Chandrasekhararao et al., 2007): The above example make sense the following:

(a) $2^{\sim} = 2$. (The only element in the set **3** with this property)

- (b) $1 \land x = x$ for all $x \in 3$. (1 is the meet (\land) identity in 3).
- (c) $0 \lor x = x$ for all $x \in 3$. (0 is the join (\lor) identity in 3).
- (d) $2 \land x = 2 \lor x = 2$ for all $x \in 3$.

1.2. Example (Chandrasekhararao et al., 2007):

 $2 = \{0, 1\}$ with operations \land , \lor , (-)[~] defined below is a Pre A*-algebra.

\wedge	0	1	\vee	0	1	Х	x~
0	0	0	0	0	1	0	1
1	0	1	1	1	1	1	0

1.2. Definition (Satyanarayana and Venkateswararao, 2011):

Let A be a Pre A*-algebra. An element $x \in A$ is described as a central element of A if $x \lor x^{\sim}$ and the set $\{x \in A / x \lor x^{\sim}=1\}$ of all central elements of A is referred the centre of A, denoted B (A).

1.1. Theorem (Satyanarayana and Venkateswararao, 2011):

Let A be a Pre A*-algebra with 1. Subsequently, B (A) is a Boolean algebra in the midst of the operations Λ , V, $(-)^{\sim}$.

1.1. Lemma (Satyanarayana and Venkateswararao, 2011):

Every Pre A*-algebra with 1 satisfies the following:

(a) $x \lor 1 = x \lor x^{\sim}$. (b) $x \land 0 = x \land x^{\sim}$.

1.2. Lemma (Satyanarayana and Venkateswararao, 2011): Every Pre A*-algebra by means of 1 satisfies the following: (a) $x \land (x^{\sim} \lor x) = x \lor (x^{\sim} \land x) = x$ (b) $(x \lor x^{\sim}) \land y = (x \land y) \lor (x^{\sim} \land y)$ (c) $(x \lor y) \land z = (x \land z) \lor (x^{\sim} \land y \land z)$

1.3. Definition (Satyanarayana and Venkateswararao, 2011):

Let A be a Pre A*-algebra. An element x in A is a central element of A if $x \lor x^{\sim}=1$ and the set {x $\in A / x \lor x^{\sim}=1$ } of all central elements of A is referred the centre of A denoted B (A).

1.4. Note (Venkateswararao et al., 2009): If A is a Pre A*- algebra with 1, then 1, 0 are in B (A). If the centre of a Pre A*- algebra concurs with {0, 1}, then we declare that A has trivial centre.

1.2. Theorem (Venkateswararao et al., 2009):

Let A be a Pre A*-algebra with 1. Then B(A) is a Boolean algebra by means of the operations \land , V, $(-)^{\sim}$.

2. BIRKHOFF'S CENTRE

In this segment, we describe Birkhoff centre of a Pre A*- algebra, in addition we shall bear out assorted properties.

2.1. Definition:

Let A be a Pre A*- algebra with meet identity. An element $a \in A$ is assumed to be Birkoff central element of a Pre A*- algebra A if there exist Pre A*- algebras A₁ and A₂ with 1 (meet (\land) identity) and an isomorphism f: A \rightarrow A₁ × A₂ such that f (a) = (1₁, 0₂). (Where 1₁, is the meet identity in A₁ and 0₂ is the join (\lor) identity in A₂ in that order).

2.2. Definition:

The set of all Birkhoff central elements of a Pre A*- algebra A is described Birkoff centre of A and denoted BC (A).

2.1. Lemma:

Let A be a Pre A*- algebra with meet identity. Then for each element $a \in BC$ (A) entails $a^{\sim} \in BC$ (A).

Proof: Let a be an element in BC (A). Then there subsist Pre A*- algebras A₁ and A₂; and an isomorphism f: $A \rightarrow A_1 \times A_2$ such that f (a) = (1₁, 0₂).

Now, define g: $A \rightarrow A_2 \times A_1$ such that g (x) = (x₂, x₁) whenever f (x) = (x₁, x₂).

Let x, $y \in A$ such that $f(x) = (x_1, x_2)$ and $f(y) = (y_1, y_2)$.

At that moment, $f(x \land y) = (x_1 \land y_1, x_2 \land y_2)$, as f is a homomorphism.

Consequently we have, $g(x \land y) = (x_2 \land y_2, x_1 \land y_1)$

$$= (x_2, x_1) \land (y_2, y_1)$$
$$= g(x) \land g(y).$$

In the same way, we can provide evidence that, $g(x \lor y) = (x) \lor g(y)$.

To substantiate that $g(x^{\sim}) = [g(x)]^{\sim}$. Let $f(x) = (x_1, x_2)$. Then $g(x) = (x_2, x_1)$. Regard as, $f(x) = (x_1, x_2)$. This entails, $(f(x))^{\sim} = (x_1, x_2)^{\sim} = (x_1^{\sim}, x_2^{\sim})$. Hence we have, $f(x^{\sim}) = (x_1^{\sim}, x_2^{\sim})$. (Since f is a homomorphism). As a result, $g(x^{\sim}) = (x_2^{\sim}, x_1^{\sim}) = (x_2, x_1)^{\sim} = (g(x))^{\sim}$. Therefore, g is a homomorphism. Besides reflect on, $f(a^{\sim}) = (f(a))^{\sim} = (1_1, 0_2)^{\sim} = (1_1^{\sim}, 0_2^{\sim}) = (0_1, 1_2)$. Subsequently we be obliged to have that $g(x^{\sim}) = (1_2, 0_1)$. In view of the fact that g is defined as so is f and as f is a bijection, then clearly so is g. Therefore, g is an isomorphism.

So we categorize x[~]is a Birkhoff's central element. Hence, $x^{\sim} \in BC$ (A).

2.2. Lemma:

Let t be an element in a Pre A*- algebra A. Then t A = {t $\land \alpha / \alpha \in A$ } is a Pre A*- algebra by the induced operations \land and \lor of A and the unary operation defined by $(t \land \alpha)^* = t \land \alpha^{\sim}$.

Proof: Given that $t A = \{ t \land a / a \in A \}$. Let us choose the elements, $t \land x, t \land y, t \land z$ from the set $t \land$, where x, y, z are in A. (1) Reflect on, $(t \land x)^{**} = (t \land x^{-})^{*} = t \land x^{--} = t \land x$. As a result, $(t \land x)^{**} = t \land x$. (2) Regard as, $(t \land x) \land (t \land x) = t \land (x \land x) = t \land x$. Therefore, $(t \land x) \land (t \land x) = t \land x$. (3) Mull over, $(t \land x) \land (t \land y) = t \land (t \land y) = t \land (y \land x) = (t \land y) \land (t \land x)$. Therefore, $(t \land x) \land (t \land y) = (t \land y) \land (t \land x)$. (4) Consider, $((t \land x) \land (t \land y))^{*} = (t \land (x \land y))^{*} = t \land (x \land y)^{-} = t \land (x^{-} \lor y^{-})$ $= (t \land x^{-}) \lor (t \land y^{-}) = (t \land x)^{*} \lor (t \land y)^{*}$. Therefore, $((t \land x) \land (t \land y))^{*} = (t \land x)^{*} \lor (t \land y)^{*}$. (5) Consider, $(t \land x) \land (t \land y) \land (t \land z)$. Therefore, $(t \land x) \land ((t \land y) \land (t \land z)) = t \land (x \land (y \land z)) = t \land ((x \land y) \land z)$ $= ((t \land x) \land (t \land y)) \land (t \land z)$. Therefore, $(t \land x) \land ((t \land y) \land (t \land z)) = ((t \land x) \land (t \land y)) \land (t \land z)$. (6) Consider, $(t \land x) \land ((t \land y) \lor (t \land z)) = (t \land x) \land (t \land (y \lor z))$ $= t \wedge (x \wedge (y \vee z)) = t \wedge ((x \wedge y) \vee (x \wedge z))$ $= (t \wedge (x \wedge y)) \vee (t \wedge (x \wedge z))$ $= ((t \wedge x) \wedge (t \wedge y)) \vee ((t \wedge x) \wedge (t \wedge z)).$ Therefore, $(t \wedge x) \wedge ((t \wedge y) \vee (t \wedge z)) = ((t \wedge x) \wedge (t \wedge y)) \vee ((t \wedge x) \wedge (t \wedge z)).$ (7) Consider, $(t \wedge x) \wedge ((t \wedge x)^* \vee (t \wedge y))$ $= (t \wedge x) \wedge ((t \wedge x^-) \vee (t \wedge y))$ $= (t \wedge x) \wedge ((t \wedge x^-) \vee (t \wedge y))$ $= t \wedge (x \wedge (x^- \vee y))$ $= t \wedge (x \wedge (x^- \vee y))$ $= t \wedge (x \wedge y)$ $= (t \wedge x) \wedge (t \wedge y).$ As a result, $(t \wedge x) \wedge ((t \wedge x)^* \vee (t \wedge y)) = (t \wedge x) \wedge (t \wedge y).$ As a consequence, $(tA, \Lambda, \vee, ^*)$ is a Pre A*-algebra.

2.3. Lemma: BC (A) is a Pre A*- algebra.

Proof: Let a, b be any elements from BC (A). Then there exists Pre A*- algebras A₁, A₂ and A₃, A₄ with 1 and isomorphisms f: A \rightarrow A₁ \times A₂ such that f (a) = (1₁, 0₂) and g: A \rightarrow A₃ \times A₄ such that g (b) = (1₃, 0₄).

Now, we have to prove that a \land b is an element in BC (A). That is, we have to find an isomorphism h: A \rightarrow A₅ \times A₆ such that h (a \land b) = (1₅, 0₆) (where 1₅ \in A₅and 0₆ \in A₆).

Suppose that g (a) = (t_3, t_4) , where $t_3 \in A_3$ and $t_4 \in A_4$.

Define, $A_5 = t_3 A_3$ where $t_3 (=1_3)$ is a meet identity in A_3 and $t_3 \wedge t_3^{\sim} (=0_3)$ is a join identity and $t_3 A_3 = \{t_3 \wedge \alpha / \alpha \in A_3\}.$

As a result of lemma 2.2, $t_3 A_3$ is a Pre A*- algebra with $1_5 = t_3$ (meet identity in A₅) and join identity $0_5 (= t_3 \land t_3^{\sim} = 0_3)$.

In addition, define, $A_6 = t_4 A_4 \times A_2$. Then A_6 is also a Pre A*- algebra in the company of meet identity $1_6 = (t_4, 1_2) (= 1_4, 1_2)$, and join identity $0_6 = (t_4 \wedge t_4^{\sim}, t_2 \wedge t_2^{\sim}) (= (0_4, 0_2)$.

Note that $0_2 = t_2 \wedge t_2 = 0_2 \wedge t_2$).

For any x in A, let f (x) = (s₁, s₂) and g (x) = (x₃, x₄) where s₁ \in A₁, s₂ \in A₂ and x₃ \in A₃, x₄ \in A₄. Define h: A \rightarrow A₅ \times A₆ by h (x) = (t₃ \wedge x₃, ((t₄ \wedge x₄), s₂)) for any x \in A.

Let $f(y) = (r_1, r_2)$ and $g(y) = (y_3, y_4)$.

Subsequently, $f (x \land y) = (s_1 \land r_1, s_2 \land r_2)$, $g (x \land y) = (x_3 \land y_3, x_4 \land y_4)$, $f (x^{\sim}) = (s_1^{\sim}, s_2^{\sim})$ and $g(x^{\sim}) = (x_3^{\sim}, x_4^{\sim})$ as f and g are isomorphisms. Consider, $h (x \land y) = (t_3 \land x_3 \land y_3)$, $(t_4 \land x_4 \land y_4, s_2 \land r_2)$) $= (t_3 \land x_3 \land t_3 \land y_3)$, $(t_4 \land x_4 \land t_4 \land y_4, s_2 \land r_2)$) $= (t_3 \land x_3, (t_4 \land x_4, s_2)) \land (t_3 \land y_3, (t_4 \land y_4, r_2))$ $= h (x) \land h (y)$. Now consider, $h (x^{\sim}) = (t_3 \land x_3^{\sim}, (t_4 \land x_4^{\sim}, s_2^{\sim}))$ (since $(t_3 \land x_3)^* = t_3 \land x_3^{\sim}$) $= (x_3^*, (x_4^*, s_2^{\sim}))$

$$=(h(x))^{\sim}.$$

Consider, h (x V y) = ($t_3 \land (x_3 \lor y_3)$, ($t_4 \land (x_4 \lor y_4, s_2 \lor r_2)$)

$$= ((t_3 \land x_3) \lor (t_3 \land y_3), ((t_4 \land x_4) \lor (t_4 \land y_4), s_2 \lor r_2))$$
$$= (t_3 \land x_3, (t_4 \land x_4, s_2)) \lor (t_3 \land y_3, (t_4 \land y_4, r_2))$$

$$= h(x) \vee h(y)$$

In view of that, h is a homomorphism.

To show h is injective, first we prove h (a \land b) = (1₅, 0₆). ($\in A_5 \times A_6 = t_3 A_3 \times (t_4 A_4 \times A_2)$)). Note that $1_5 \in A_5 = t_3 A_3 = \{t_3 \land \alpha / \alpha \in A_3\}$ and $0_6 \in A_6 = t_4 A_4 \times A_2$

= { $t_4 \land \alpha / \alpha \in A_4$ } × A_2 , where 1_5 is the meet identity in $t_3 A_3$ and 0_6 is the join identity in $t_4 A_4 \times A_2$.

We have,
$$f(a) = (1_1, 0_2)$$
, $g(a) = (t_3, t_4) (= (1_3, t_4))$, $g(b) = (1_3, 0_4)$, $f(b) = (t_1, t_2)$.

Now consider, $h(a \land b) = h(a) \land h(b)$ (since h is a homomorphism)

(as h (a), h (b) $\in A_5 \times A_6 = t_3 A_3 \times t_4 A_4 \times A_2$ and a, b are Birkoff central elements of A)

$$= (t_3 \land t_3, (t_4 \land t_4, 0_2)) \land (t_3 \land 1_3, (t_4 \land 0_4, t_2))$$

= $(t_3, (t_4 \land 0_4, 0_2 \land t_2))$
= $(t_3, (t_4 \land 0_4, t_2 \land t_2^{\sim}))$
= $(t_3, (t_4 \land t_4^{\sim}, 0_2))$
(by lemma 1.1(b), we have, $x \land 0 = x \land x^{\sim}$ and $t_2 \land t_2^{\sim}$ defined as 0_2)

$$=(1_5, 0_6).$$

Let x, $y \in A$ such that h(x) = h(y). To prove that x = y.

Then $t_3 \wedge x_3 = t_3 \wedge y_3$ and $t_4 \wedge x_4 = t_4 \wedge y_4$ and $s_2 = r_2$. In order to prove x = y we require to prove $s_1 = r_1$ and $s_2 = r_2$. So it suffixes to prove $s_1 = r_1$ as already we have $s_2 = r_2$.

Now consider $g(a) \land g(x) = (t_3, t_4) \land (x_3, x_4)$

$$= (t_3 \land x_3, t_4 \land x_4)$$
$$= (t_3 \land y_3, t_4 \land y_4)$$
$$= g (a) \land g (y).$$

Since g is a homomorphism, $g(a \land x) = g(a \land y)$.

This implies, $a \land x = a \land y$ (since g is one-one).

Subsequently, $f(a \land x) = f(a \land y)$ (since f is well defined).

Hence, $f(a) \wedge f(x) = f(a) \wedge f(y)$ (since f is a homomorphism).

This leads to, $(1_1, 0_2) \land (s_1, s_2) = (1_1, 0_2) \land (r_1, r_2)$.

Hence, $(1_1 \land s_1, 0_2 \land s_2) = (1_1 \land r_1, 0_2 \land r_2).$

This implies, $(s_1, 0_2 \land s_2) = (r_1, 0_2 \land r_2)$.

Thus, $s_1 = r_1$ and $s_2 = r_2$ (already in the above we have, $s_2 = r_2$)

Therefore, $(s_1, s_2) = (r_1, r_2)$.

So, f(x) = f(y).

This implies, x = y (since f is one-one).

Therefore, h is one – one.

Let $(x, y) \in A_5 \times A_6$. Then $(x, y) = (t_3 \land x_3, (t_4 \land x_4, s_2))$ for some $x_3 \in A_3, x_4 \in A_4$ and $s_2 \in A_2$.

Since $t_3 \land x_3 \in t_3 A_3 \subseteq A_3$, $(t_3 \land x_3, t_4 \land x_4) \in A_3 \times A_4$ and g is onto, there exist $t \in A$ such that $g(t) = (t_3 \land x_3, t_4 \land x_4)$.

Now $g(a \land t) = g(a) \land g(t)$

 $= (t_3, t_4) \land (t_3 \land x_3, t_4 \land x_4)$ = (t_3 \land t_3 \land x_3, t_4 \land t_4 \land x_4) = (t_3 \land x_3, t_4 \land x_4) = g(t)

Therefore, $g(a \land t) = g(t)$ ------1

This implies. $a \wedge t = t$ (since g is one-one).

Hence, $f(a \land t) = f(t)$ (since f is well defined).

Then we have, $f(a) \wedge f(t) = f(t)$ (since f is a homomorphism).

This leads to $(1_1, 0_2) \land (y_1, y_2) = (y_1, y_2)$ (since $t \in A$),

(Here, f (t) =
$$(y_1, y_2)$$
, where, $y_1 \in A_1, y_2 \in A_2$).

As a result, $(1_1 \land y_1, 0_2 \land y_2) = (y_1, y_2)$.

Consequently, $(y_1, 0_2 \land y_2) = (y_1, y_2)$. -----2

Therefore, $y_2 = 0_2 \wedge y_2$

Now, by above we observe that, $y_1 \in A_1$, $y_2 \in A_2$. Subsequently, $(y_1, y_2) \in A_1 \times A_2$.

Since f is onto, there exists, say $n \in A$ such that $f(n) = (y_1, y_2)$.

Now consider, $f(a \land n) = f(a) \land f(n)$

$$= (1_1, 0_2) \land (y_1, y_2)$$

= (1_1 \lapha y_1, 0_2 \lapha y_2)
= (y_1, 0_2 \lapha y_2)
= (y_1, y_2). (by (2))
= f (t).

Since f is one-one, $a \wedge n = t$ and since g is well defined g $(a \wedge n) = g(t)$ ------3 Also, since, $n \in A$ we have, $g(n) = (z_1, z_2)$.

This implies, $(t_3 \land t_3 \land x_3, t_4 \land t_4 \land x_4) = g(a \land t)$

$$= g(t) (by (1))$$

= g(a \lambda n) (by (3))
= g (a) \lambda g (n) (since g is a homomorphism)
= (t_3, x_4) \lambda (z_1, z_2)
= (t_3 \lambda z_1, t_4 \lambda z_2).

Therefore, $t_3 \wedge t_3 \wedge x_3 = t_3 \wedge z_1$ and $t_4 \wedge t_4 \wedge x_4 = t_4 \wedge z_2$ ------4

Now consider, $h(n) = (t_3 \land z_1, t_4 \land z_2, s_2)$

$$= (t_3 \land t_3 \land x_3, (t_4 \land t_4 \land x_4, s_2))$$
$$= (t_3 \land x_3, (t_4 \land x_4, s_2)) (by (4))$$
$$= (x, y).$$

Therefore, h is onto. Since, $a, b \in BC(A)$ implies $a \land b \in BC(A)$ and by lemma 2.1,

 $a \in BC(A)$ implies $a^{\sim} \in BC(A)$. In addition to this, $a \lor b \in BC(A)$.

As a result, BC(A) is a sub-algebra of a Pre A*- algebra A and for this reason BC(A) is a Pre A*algebra.

2.1. Note: Let us bring to mind the designation of centre of a Pre A*- algebra [6]. Let BC(A) be a Pre A*- algebra with meet identity 1. Then the centre of BC(A) is defined as the set B(BC(A)) = $\{a \in BC(A) / a \lor a^{\sim} = 1\}.$

One can see that B (BC(A)) is a Boolean algebra under the operations induced by those on BC(A).

2.4. Lemma:

Let $a \in B$ (BC(A)). Then for all x in BC(A), $a \land x = a$ if and only if, $a \lor x = x$.

Proof: Suppose that $a \land x = a$. Consider, $a \lor x$ = $(a \land x) \lor x$ (since $a \land x = a$) = $[a \land (a^{\sim} \lor x)] \lor x$ (by axiom (vii) of definition [1.1], we have, $x \land y = x \land (x^{\sim} \lor y)$) = $(a \lor x) \land [(a^{\sim} \lor x) \lor x]$ = $(a \lor x) \land (a^{\sim} \lor x)$ = $(a \land a^{\sim}) \lor x = 0 \lor x = 0$. Consequently, $a \lor x = x$. On the other hand presume that $a \lor x = x$. Consider, $a \land x = a \land (a \lor x) = a$ (since a in B (BC(A))). Hence, $a \land x = a$.

2.5. Lemma:

Let BC (A) be a Pre A*- algebra and a be an element in B (BC (A)). In case, the set $S_a = \{ x \in BC(A) / a \land x = a \}$, then S_a is closed under the operations \land and \lor . Also for any x in the set S_a , define, $x^* = a \lor x^-$. Then $(S_a, \land, \lor, \overset{*}{})$ is a Pre A*-algebra.

Proof: Let x, y, z be from the set S_a . Then, $a \land x = a$ and $a \land y = a$, $a \land z = a$.

This entails, a $\lor x = x$ and a $\lor y = y$, a $\lor z = z$. (By above lemma [2.4])

Now reflect on, $a \land (x \land y) = (a \land x) \land y = a \land y = a$.

Hence, $x \wedge y$ belongs to the set S_a .

Also consider, $a \land (x \lor y) = (a \land x) \lor (a \land y) = a \lor a = a$.

This implies, $x \lor y$ is an element in the set S_a .

Consequently, S_a is closed under the operation \land and \lor .

Reflect on, $a \land x^* = a \land (a \lor x^{\sim}) = a$ (since a is in B(A)).

This involves, x^* belongs to S_a .

In consequence S_a is closed under *. Now we have the following: (1) Regard as, $x^{**} = (a \lor x^{\sim})^{*}$ $= a \vee (a \vee x^{\sim})^{\sim} = a \vee (x^{\sim} \wedge x)$ $= (a \lor a^{\sim}) \land (a \lor x) = a \lor x$ (as a is a Boolean element, $a \lor a^{\sim} = 1) = x$. For that reason, $x^{**} = x$. (2) Reflect on, $x \land x = (a \lor x) \land (a \lor x) = a \lor (x \land x) = a \lor x = x$. As a result, $x \land x = x$. (3) By Considering, $x \land y = (a \lor x) \land (a \lor y) = (a \lor y) \land (a \lor x) = y \land x$. Accordingly, $x \land y = y \land x$. (4) Regard as, $(x \land y)^* = a \lor (x \land y)^{\sim}$ $= a \lor (x^{\sim} \lor y^{\sim}) = (a \lor x^{\sim}) \lor (a \lor y^{\sim}) = x^* \lor y^*.$ Consequently, $(x \land y)^* = x^* \lor y^*$. (5) Consider, $x \land (y \land z) = (a \lor x) \land \{(a \lor y) \land (a \lor z)\}$ $= a \vee \{x \land (y \land z)\}$ = a $V\{(x \land y) \land z\}$ (since x, y, z are in A) $= (x \land y) \land z$. Thus, $x \land (y \land z) = (x \land y) \land z$. (6) Consider, $x \land (y \lor z) = (a \lor x) \land \{(a \lor y) \lor (a \lor z)\}$ $= \{(a \lor x) \land (a \lor y)\} \lor \{(a \lor x) \land (a \lor z)\}$ $= \{a \lor (x \land y)\} \lor \{(a \lor (x \land z))\}$ $= (x \land y) \lor (x \land z).$ Therefore, $x \land (y \lor z) = (x \land y) \lor (x \land z)$. (7) Consider, $x \land (x^* \lor y) = x \land \{(a \lor x^{\sim}) \lor y\}$ $= \{ x \land (a \lor x^{\sim}) \} \lor (x \land y)$ $= (x \land x^{\sim}) \lor (x \land y)$ (since a $\lor x = x$) $= x \wedge (x^{\sim} \vee y)$ $= x \wedge y.$ Therefore, $x \land (x^* \lor y) = x \land y$.

Thus, $(S_a, \Lambda, V, ^*)$ is a Pre A*-algebra.

2.6. Lemma:

Let BC (A) be a Pre A*- algebra and $a \in B$ (BC (A)). Then, $f_a : BC$ (A) $\rightarrow S_a$ is an anti-homomorphism.

Proof: Let $f_a: BC(A) \rightarrow S_a$ be a mapping defined by $f_a(x) = a \lor x^{\sim}$.

Consider, $f_a(x \land y) = a \lor (x \land y)^{\sim}$ $= a \lor (x^{\sim} \lor y^{\sim})$ $= (a \lor x^{\sim}) \lor (a \lor y^{\sim})$ $= f_a(x) \lor f_a(y).$ Therefore, $f_a(x \land y) = f_a(x) \lor f_a(y).$ Again consider, $f_a(x \lor y) = a \lor (x^{\sim} \land y^{\sim})$ $= (a \lor x^{\sim}) \land (a \lor y^{\sim})$ $= f_a(x) \land f_a(y).$ Therefore, $f_a(x \lor y) = f_a(x) \land f_a(y).$ Finally, consider, $[f_a(x)]^* = (a \lor x^{\sim})^*$ $= a \lor (a \lor x^{\sim})^{\sim}$ $= a \lor (a^{\sim} \land x)$ $= a \lor x$

Similarly on the other hand consider, $f_a(x^*) = a \vee (x^*)^{\sim}$

$$= a \lor (a \lor x^{\sim})^{\sim}$$
$$= a \lor (a^{\sim} \land x)$$
$$= a \lor x$$

Therefore we must have, $[f_a(x)]^* = f_a(x^*)$.

Therefore, $f_a: BC(A) \rightarrow S_a$ is an anti-homomorphism.

3. CONCLUSION

This study has been endow with the notion of Birkhoff's centre of a Pre A*-algebra and concerned results as well. In fact, it is pragmatic that the set of all Birkhoff's central elements of a Pre A*-algebra, that is; Birkhoff centre of Pre A*-algebra, structures yet again a Pre A*-algebra. Auxiliary, it is acknowledged that the set of all central elements of a Birkhoff centre of Pre A*-algebra shapes again a Boolean algebra. It is identified that centre of the Birkhoff centre of a Pre A*-algebra is a Boolean algebra and any element a of such algebra satisfies a $\land x = a$ if and only if a $\lor x = x$ for

all x in Birkhoff centre of a Pre A*-algebra. A crucial set $S_a = \{x \in BC(A) / a \land x = a\}$, was defined by taking an element a from the Pre A*algebra (the Birkhoff's centre of a Pre A*algebra) and proved that it is also again a Pre A*-algebra. Finally, it is obtained an anti-homorphism between those algebras.

4. ACKNOWLEDGEMENTS

The authors wish to thank the referees for their valuable suggestions for the improvement of the manuscript.

5. REFERENCE

- Birkhoff, G. 1948. Lattice theory. *American Mathematical Society*, Colloquium Publications, **25**: 283p.
- Chandrasekhararao, K., Venkateswararao, J & Koteswararao, P. 2007. Pre A* Algebras. *Journal* of Institute of Mathematics & Computer Sciences, (Math.Ser.), **20**(3):157-164.
- Fernando, G & Craig, C.S. 1990. The Algebra of Conditional logic. *Algebra Universalis*, **27**:88-110.
- Manes, E.G. 1993. Ada and the Equational Theory of If-Then-Else. *Algebra Universalis*, **30**:373-394.
- Satyanarayana, A & Venkateswararao, J. 2011. Ideals of Pre A*-Algebra. *International Journal of Computational Cognition*, **9(2)**:25-30.
- Swamy, U. M & Murti, G.S. 1981. Boolean Centre of a Semigroup. *Pure and Applied Mathematika Sciences*, **13**:1-2.
- Swamy, U.M & Pragathi, Ch. 2003. Birkhoff Centre of a Semigroup. *Southeast Asian Bulletin* of Mathematics, **26(4)**:659-667.
- Venkateswararao, J., Srinivasarao, K., Nageswararao, T & Srinivasarao, R. V. N. 2009. Exploring Pre A* - Algebras as a New Paradigm. *International Journal of Systemics, Cybernetics and Informatics*, (ISSN 0973-4864), 1:14-19.